Simulink® Test™
Jsercin

MATLAB&SIMULINK

R2018a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test ™ User's Guide
© COPYRIGHT 2015-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.

Revision History

March 2015 Online only New for Version 1.0 (Release 2015a)
September 2015 Online only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release
2015aSP1)

March 2016 Online only Revised for Version 2.0 (Release 2016a)
September 2016 Online only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)
March 2018 Online Only Revised for Version 2.4 (Release 2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Test Strategies

1]

Link Tests to Requirements 1-2
Requirements Traceability Considerations 1-2
Establish Requirements Traceability for Testing 1-3

Test Harness

2|

Test Harness and Model Relationship 2-2
Test Harness Description 2-2
Harness — Model Relationship for a Model Component 2-3
Harness — Model Relationship for a Top-Level Model 2-4
Resolving Parameters 2-5

Considerations and Limitations 2-7
Test Harmesst e 2-7
Test Sequence Block 2-7

Test Harness Construction for Specific Model Elements 2-9
Signal Conversion 2-9
FunctionCalls i, 2-10
Physical Signal Connections 2-10
BusSignals 2-10
Non-Graphical Connections 2-10
Export FunctionModels 2-11
Execution Semantics 2-12
Sample Time Specification 2-12

Select Test Harness Properties 2-14
CreateaTestHarness v, 2-14

iii

Considerations for Selecting Test Harness Properties 2-14

Harness Name i, 2-15
Save Test Harnesses Externally 2-15
Choosing Sources and Sinks 2-15
Add Separate Assessment Block 2-16
Open Harness After Creation 2-16
Create without compiling the model 2-16
Create scalarinputs 2-16
Post-create callback method 2-16
Rebuild harnessonopen 2-17
Update Configuration Parameters and Model Workspace data on
rebuild 2-17

Post-rebuild callback method 2
Synchronization Mode 2
Initialize/Terminate/Reset Behavior 2-18
Verification Modes 2

2

Change Harness Properties -18
Test Harness Parameters and Signals 2-20
Test Harness Generation Without Compilation 2-20
Signal Conversion Subsystem 2-20
Refine, Test, and Debug a Subsystem 2-22
Model and Requirements 2-22
Create a Harness for the Controller 2-24
Inspect and Refine the Controller 2-26
Add Test Inputs and Test the Controller 2-26
Debugthe Controller 2-27
Manage Test Harnessescvviu... 2-30
Internal and External Test Harnesses 2-30
Manage External Test Harnesses 2-30
Convert Between Internal and External Test Harnesses 2-31
Preview and Opena Test Harness 2-33
Find Test Cases Associated with a Test Harness 2-34
Export Test Harnesses to Separate Models 2-34
Clone and Export a Test Harness to a Separate Model 2-35
Delete Test Harnesses Programmatically 2-37
Move and Clone Test Harnesses 2-39
Customize Test Harnesses 2-42
Callback Function Definition and Harness Information 2-43
How to Display Harness Information struct Contents 2-45
Customize a Test Harness to Create Mixed Source Types . . . 2-45

iv Contents

Test Harness Callback Example 2-47

Create Test Harnesses from Standalone Models 2-50
Test Harness Import Workflow 2-50
Harness Import Considerations 2-51
Import a Standalone Model as a Simulink® Test™ Harness . 2-52

Synchronize Changes Between Test Harness and Model 2-55
Set Synchronization for a New Test Harness 2-55
Change Synchronization of an Existing Test Harness 2-56
Synchronize Configuration Set and Model Workspace Data .. 2-56
Check for Unsynchronized Component Differences 2-57
Rebuild a Test Harness 2-57
Push Changes from Test Harness to Model 2-58
Check Component and Push Parameter to Main Model 2-58

Test LibraryBlocks 2-62
Library Testing Workflow 2-62
Library and Linked Subsystem Test Harness 2-63
Edit Library Block from a Test Harness 2-64

Test Sequences and Verifications

3|

Test Sequence Basics 3-2
Structure of a Test Sequence 3-2
Test Sequence Hierarchy 3-2
StepTransitions 3-3
Create a Basic Test Sequence 3-3

Assessment Basics, 3-8
OVETVIEW . . ottt e e et e e et et e 3-8
Comparing Simulation to Baseline Data or Another

Simulation 3-9
Post-Processing Simulation Output 3-9
Run-Time Assessmentscviiiieinn... 3-10

Best Practices for verify Statements 3-13
Activating verify Statements with Active Test Step Data 3-13
Verify Using Signal Conditions 3-17

vi

Contents

Organize Test Sequences

Test Sequence Editor
Input, Output, and Data Management
Add and Delete Test Steps
CopyTest Stepsot
Reorder Test Steps and Transitions
Change Test Step Hierarchy
Test Step Transitions

Test Step Actions and Transitions
Transition Between Steps Using Temporal or Signal

Conditions e

Temporal Operators,

Transition Operators

Use Messages in Test Sequences

Signal Generation Functions
Sinusoidal and Random Number Functions in Test
SequUENCEeS e
Using an External Function from a Test Sequence Block
Signal Generation Functions

Run-Time Assessments0.v ...
VeIfy . .
ASSETIT . .. e e
Assessment Statements o L.
Logical Operatorso,
Relational Operators

Programmatically Create a Test Sequence

Syntax for Test Sequences and Assessments
Assessment Statements oL
Temporal Operatorscviiiiienno...
Transition Operators,
Signal Generation Functions
Logical Operatorsiiiiiiineennnn..
Relational Operators iiiuiinnn..

DebugaTest Sequence
View Test Step Execution During Simulation
Set Breakpoints to Enable Debugging

View Data Values During Simulation
Step Through Simulation

Test a Model Component Using Signal Functions
CreateaTestSequence,
Simulate the Test Harness

Test Downshift Points of a Transmission Controller

Test Assessment Reuse
Reuse Test Assessments Using a Library

View Graphical Results From Model Verification Library . . .

Test Harness Software- and Processor-in-the-Loop

4

SIL Verification for a Subsystem
Create a SIL Verification Harness for a Controller
Configure and Simulate a SIL Verification Harness
Compare the SIL Block and Model Controller Outputs

Test Code in S-Functions
Set Up the Working Environment
Create a Test Harness for the Controller
Add Inputs and Set Simulation Parameters
Create a Test Case and Obtain a Baseline
Run the Test Case and View Results

Simulink Test Manager Introduction

d|

Introduction to Test Manager
Start Test Manageriiininennnn
Create Tests and Understand the Test Hierarchy
View TestResults,
ShareResults i

5-2
5-4
5-4

viii

Contents

Compare Test Files 5-4

6|

Manage Test File Dependencies 6-2
Package a Test File Using Simulink Projects 6-2
Find Test File Dependencies and Impact 6-4
Share a Test File with Dependencies 6-8
Test Model Output Against a Baseline 6-9
CreatetheTestCase 6-9
Run the Test Case and View Results 6-10
Test a Simulation for Run-Time Errors 6-13
Configurethe Model 6-13
CreatetheTestCase, 6-14
RuntheTestCase, 6-14
View TestResults 6-15
Generate Tests from Model Elements 6-16
Generate Tests for a Subsystem 6-18
Generate the Subsystem Test Case 6-18
Synchronize Test Cases to Model Changes 6-20
Specify Microsoft Excel File Format for Signal Data 6-21
Basic Excel File Format 6-21
Inputand OutputData 6-22
Simulation for Equivalence Tests 6-22
Scalar, Multidimensional, Complex, and Bus Signals 6-23
Data Type, Unit, Interpolation, and Block Path/Port Index ... 6-25
Function-Call Execution Times 6-27
Limitations o 6-28
Use External Inputsin TestCases 6-29
Add a MAT-File as an External Input 6-29
Add Microsoft Excel FileasInput 6-29

Create Data Filesto Useas TestInputs

Create a Microsoft Excel File for InputData
Create a MAT-File forInputData

Run Tests in Multiple Releases

Considerations for Testing in Multiple Releases
Add Releases Using Test Manager Preferences
Run Baseline Tests in Multiple Releases
Run Equivalence Tests in Multiple Releases
Run Simulation Tests in Multiple Releases

Examine Test Failures and Modify Baselines

Examine Test Failure Signals and Update Baseline Test
Manually Update Signal Data in a Baseline

Automate Tests Programmatically

List of Functionsand Classes
Create and Run a Baseline TestCase
Create and Run an Equivalence TestCase
Run a Test Case and Collect Coverage
Create and Run Test Case Iterations

Run Combinations of Tests Using Iterations

Create Table Iterations
Create Scripted Iterations
Capture Baseline Data from Iterations
Sweep Through a Set of Parameters

Collect CoverageinTests

Enable and Collect Coverage fora Test File
Considerations for Collecting Coverage in Test Harnesses . .

Run Tests Using Parallel Execution

Use Parallel Execution
When Do Tests Benefit from Using Parallel Execution?

Apply Tolerances to Test Criteria

Modify Criteria Toleranceso....
Change Leading Tolerance in a Baseline Comparison Test . . .

Test Manager Limitations

SimulationMode
Callback Scripts

ix

X

Contents

Protected Models

Parameter Overrides
Breakpoints

Highlight in Model

Test Sections

Select Releases for Testing

Set Preferences to Display Test Sections
Select releases for simulation

Tags ...t

Description i e

Requirements
System Under Test

Parameter Overrides

Callbacks

Inputs

Simulation Outputs

Configuration Setting Overrides
Simulation 1 and Simulation2

Equivalence Criteria

Baseline Criteriat
Custom Criteria

Iterations

Coverage Settings
Test File Options

Test Models Using Inputs Generated by Simulink Design Verifi

er i e

Overall Workflow

Test Case Generation Example

Apply Custom Criteriato TestCases
MATLAB Testing Framework
Define a Custom Criteria Script
Reuse Custom Criteria and Debug Using Breakpoints

Assess the Damping Ratio of a Flutter Suppression System . .

Custom Criteria Programmatic Interface Example

Create, Store, and Open MATLAB Figures

Create a Custom Figure for
Include Figures in a Report

aTestCase

6-76
6-77
6-77
6-77

6-78
6-78
6-79
6-79
6-79
6-79
6-80
6-80
6-81
6-81
6-83
6-83
6-84
6-84
6-84
6-85
6-86
6-87
6-87
6-87

6-88
6-88
6-89

6-93
6-93
6-94
6-95
6-97
6-102

6-104
6-104
6-106

Test Models Using MATLAB Unit Test 6-107

Overall Workflow 6-107
Considerations 6-107
Comparison of Test Nomenclature 6-108
Basic Workflow Using MATLAB® Unit Test 6-109
Test a Model for Continuous Integration Systems 6-110
Filter Test Executionand Results 6-117
AdATags ..o oot e 6-117
Filter Testsand Results 6-117
RunFiltered Tests 6-117

Test Manager Results and Reports

7

ViewTest Case Results 7-2
View Results Summary 7-2
Visualize Test Case Simulation Output and Criteria 7-4

Export Test Results and Generate Reports 7-9
ExportResults 7-9
CreateaTest ResultsReport 7-10
Save Reporting Options witha Test File 7-10
Generate Reports Using Templates 7-11

Customize Test Reports 7-14
Inheritthe Report Class 7-14
Method Hierarchy 7-14
Modifythe Classt 7-16
Generate a Report Using the Custom Class 7-18

Append CodetoaTestReport 7-20

Results Sections 7-23
Summary 7-24
Test Requirements 7-24
Iteration Settings 7-25
Brrors 7-25
LOgS « e e 7-25
DesCription e 7-25

xi

xii

Parameter Overridesc .. 7-25
Coverage Results 7-25

Real-Time Testing

8

Test ModelsinReal Time 8-2
Overall Workflow 8-2
Real-Time Testing Considerations 8-3
Complete Basic Model Testing 8-3
Set up the Target Computer 8-3
Configure the Model or Test Harness 8-14
Add Test Cases for Real-Time Testing 8-6
Assess Real-Time Execution Using verify Statements 8-11

Reuse Desktop Test Cases for Real-Time Testing 8-13
Convert Desktop Test Cases to Real-Time 8-13
Use External Data for Real-Time Tests 8-13
Example 8-14

9

Test Model Against Requirements and Report Results 9-2
Requirements Overview, 9-2
Test a Cruise Control Safety Requirement 9-2
Analyze a Model for Standards Compliance and Design
Errors 9-6
Standards and Analysis Overview 9-6
Check Model for Style Guideline Violations and Design
Errors 9-6
Perform Functional Testing and Analyze Test Coverage 9-9
Functional Testing and Coverage Analysis Overview 9-9
Incrementally Increase Test Coverage Using Test Case
Generation 9-9

Contents

Analyze Code and Test Software-in-the-lLoop 9-13

Code Analysis and Testing Software-in-the-Loop Overview . . 9-13

Analyze Code for Defects, Metrics, and MISRA C:2012 9-13

Module Verification and Testing Processor-in-the-Loop 9-22
Module Verification and Testing Processor-in-the-

Loop OVEIVIEW . . .ot e e e e e 9-22

Testa ModelinReal Time 9-23

Real-Time Testing and Testing Production Models
OVervIew 9-23

xiii

Test Strategies

1 st Strategies

Link Tests to Requirements

In this section...

“Requirements Traceability Considerations” on page 1-2

“Establish Requirements Traceability for Testing” on page 1-3

Since requirements specify behavior in response to particular conditions, you can develop
test inputs, expected outputs, and assessments from the model requirements.

Requirements ‘

\ ([Expected
' Outputs

p : | [—\ Pass /
m Test Inputs] — Model ‘ —I"| Qutputs ‘—h—

Fail
) Analysis
)

m Assessm entsj—lr

Requirements Traceability Considerations

Consider the following limitations working with requirements links in test harnesses:

Some blocks and subsystems are recreated during test harness rebuild operations.
Requirements linking is not supported for these blocks and subsystems in a test
harness:

Conversion subsystems between the component under test and the sources or sinks
Test Sequence blocks that schedule function calls

Link Tests to Requirements

* Blocks that drive control input signals to the component under test
* Blocks that drive Goto or From blocks that pass component under test signals
+ Data Store Read and Data Store Write blocks
* Ifyou use external requirements storage, performing the following operations requires
reestablishing requirements links to model objects inside test harnesses:
* Cut/paste or copy/paste a subsystem with a test harness
* Clone a test harness
* Move a test harness from a linked block to the library block

Establish Requirements Traceability for Testing

If you have a Simulink Test and a Simulink Requirements™ license, you can link
requirements to test harnesses, test sequences, and test cases. Before adding links,
review “Supported Requirements Document Types” (Simulink Requirements).

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately
synchronize between the test harness and the main model. Other changes to the
component under test, such as adding a block, synchronize when you close the test
harness. If you add a block to the component under test, close and reopen the harness to
update the main model before adding a requirement link.

To view items with requirements links, select Analysis > Requirements > Highlight
Model.

Requirements Traceability for Test Sequences
In test sequences, you can link to test steps. To create a link, first find the model item,
test case, or location in the document you want to link to. Right-click the test step, select

Requirements, and add a link or open the link editor.

To highlight or unhighlight test steps that have requirements links, toggle the

requirements links highlighting button = in the Test Sequence Editor toolstrip.
Highlighting test steps also highlights the model block diagram.

1-3

1 st Strategies

1-4

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to

distinguish which blocks and test steps apply to it. To link test steps or test harness
blocks to test cases,

1

Requirements Traceability Example

Open the test case in the Test Manager.
Highlight the test case in the test browser.

Right-click the block or test step, and select Requirements > Link to Current Test

Case.

This example demonstrates adding requirements links to a test harness and test

sequence. The model is a component of an autopilot roll control system. This example
requires Simulink Test and Simulink Requirements.

1

Open the test file, the model, and the harness.

open AutopilotTestFile.mldatx,
open_system RollAutopilotMdlRef,

sltest.harness.open('RollAutopilotMdlRef/Roll Reference', ...

'RollReference Requirementl 3')

In the test harness, select Analysis > Requirements > Highlight Model.

The test harness highlights the Test Sequence block, component under test, and Test

Assessment block.

Dikcrete Derka the

L
L B AP ey
APETg

1 - Tirm Kna
TumiKroo

L

PriR

Link Tests to Requirements

3 Add traceability to the Discrete Derivative block.
a Right-click the Discrete Derivative block and select Requirements > Open
Outgoing Links dialog.
b In the Requirements tab, click New.
¢ Enter the following to establish the link:

* Description: DD link

* Document type: Text file

* Document: RollAutopilotRequirements.txt
* Location: 1.3 Roll Hold Reference

Requirements | Document Index
OO Link
Memw
Up
Do
Description: 0D Link
Document type: [Text file -] Use current
Diocument. RollautopilotRequirements. it -
Location:
(Type identifier [SEarch text 1.2 Rall Hold Reference)
Uzer tag. -

d Click OK. The Discrete Derivative block highlights.

1-5

1 st Strategies

4 To trace to the requirements document, right-click the Discrete Derivative block, and
select Requirements > DD Link. The requirements document opens in the editor
and highlights the linked text.

1.3 REoll Hold Reference]

Hawvigate to test harness using MATLAER command:
web('http://localhost:31415/matlab/feval /rmiobjnavigate?argu

REQUIREMENT

1.3.1 When roll hold mode becomes the active mode the roll hold
Navigate to test step using MATLAR command:
web('http://localhost:31415/matlab/feval /frmiobjnavigate?argu

1.3.1.1. The roll hold reference shall be set to zero if the act
Navigate to test step using MATLAR command:
web('http://localhost:31415/matlab/feval /frmiobjnavigate?argu

5 Open the Test Sequence block. Add a requirements link that links the
InitializeTest step to the test case.

In the Test Manager, highlight Requirement 1.3 Test in the test browser.

Right-click the InitializeTest step in the Test Sequence Editor. Select
Requirements > Link to Current Test Case.

When the requirements link is added, the Test Sequence Editor highlights the

step.
step Transition
Initizlize Test 1. true
Phi=0;
APENQ = false;
Turnknobh = 0;

% Initializes test sequence outputs

1-6

See Also

See Also

Related Examples

. “Organize Test Sequences” on page 3-19
. “Test Assessment Reuse” on page 3-79
. “Requirements-Based Testing for Model Development”

1-7

Test Harness

* “Test Harness and Model Relationship” on page 2-2

* “Considerations and Limitations” on page 2-7

* “Test Harness Construction for Specific Model Elements” on page 2-9
* “Select Test Harness Properties” on page 2-14

» “Test Harness Parameters and Signals” on page 2-20

* “Refine, Test, and Debug a Subsystem” on page 2-22

* “Manage Test Harnesses” on page 2-30

* “Customize Test Harnesses” on page 2-42

* “Create Test Harnesses from Standalone Models” on page 2-50

* “Synchronize Changes Between Test Harness and Model” on page 2-55
» “Test Library Blocks” on page 2-62

2 Test Harness

Test Harness and Model Relationship

2-2

In this section...

“Test Harness Description” on page 2-2

“Harness — Model Relationship for a Model Component” on page 2-3
“Harness — Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5

Test Harness Description

A test harness is a model block diagram that you can use to develop, refine, or debug a
Simulink model or component. In the main model, you associate a harness with a model
component or the top-level model. The test harness contains a separate model workspace

and configuration set, yet it persists with the main model and can be accessed via the
model canvas.

You build the test harness model around the component under test, which links the
harness to the main model. If you edit the component under test in the harness, the main
model updates when you close the harness. You can generate a test harness for:

* A model component, such as a subsystem. The test harness isolates the component,
providing a separate simulation environment from the main model.

* A top-level model. The component under test is a Model block referencing the main
model.

Test Harness and Model Relationship

Test Harness Harness model workspace

Harness configuration parameters
Harness model workspace

Hamess configuration parameters

e (]
O— . alpha frad) » 1)
s Stk Input ¢n} 4y

Test Harmess

— \‘-/J oy alpha irad)
@—b aApha(md) Elevator Command fceg) |——#(7) u Nz Pilet (g) »(1)
e Filol (g}
(; wa adsec) Component
;)_I r—
o e Under Test
Under Test

Model workspace | Top-level model
Model configuration parameters i

Model component

Harness — Model Relationship for a Model Component

When you associate a test harness with a model component, the harness model
workspace contains copies of parameters associated with the component.

This example shows a test harness for a component that contains a Gain block. The
harness model workspace contains a copy of the parameter g because g defines a part of
the component.

The parameter h is the gain of a gain block in the harness, outside the component under
test (CUT). h exists only in the harness model workspace.

2-3

2 Test Harness

2-4

System model workspace | System model
g8 |

L >

Component

Harness creation l

Harness model workspace | Harness model

o

o>

Harneszad Component

Adding a block to the
harness

Harness model workspace | Harness model

>]

Hamszsed Companent

Harness — Model Relationship for a Top-Level Model

When you associate a harness with the top level of the main model, the harness model
workspace does not contain copies of parameters relevant to the component. The
component under test is a Model block referencing the main model, and parameters
remain in the main model workspace. In this example, the component under test
references the main model, and the variable g exists in the main model workspace. The
variable h is the value of the Gain block in the harness. It exists only in the harness model
workspace.

Test Harness and Model Relationship

System model workspace System model
g {component)

Harmess creation l
Hameszs model workzpace Hamess model

Component under test
{modsl block)

I.D_l_'

hamess

Hamezz modal workezpace Harnass model
h
Campanent under tzst
D_l_. [model black)

Adding a block fo the l

Resolving Parameters

Parameters in the test harness resolve to the most local workspace. Parameters resolve to

the harness model workspace, then the system model workspace, then the base
MATLAB® workspace.

2-5

2 Test Harness

See Also

More About

. “Componentization Guidelines” (Simulink)

2-6

Considerations and Limitations

Considerations and Limitations

In this section...

“Test Harness” on page 2-7
“Test Sequence Block” on page 2-7

Consider these behaviors and limitations when working with a test harness or Test
Sequence block.

Test Harness

You can open only one test harness at a time per main model.

Do not comment out the component under test in the test harness. Commenting out
the component under test can cause unexpected behavior.

If a subsystem has a test harness, you cannot expand the subsystem. Delete all test
harnesses before expanding the subsystem.

Test harnesses are not supported for blocks underneath a Stateflow® object.
Upgrade advisor and XML differencing are not supported for test harness models.
A test harness with a Signal Builder block source does not support:

* Frame-based signals
* Complex signals
* Variable-dimension signals

For a test harness with a Test Sequence block source, all inputs to the component
under test must operate with the same sample time.

Test Sequence Block

HDL code generation is not supported for the Test Sequence block.

The Test Sequence Editor changes the following syntax automatically:

* Duplicate test step names. For example, if step 1 exists, and you change another
step name to step 1, the step name you change automatically changes to step 2.

* Increment and decrement operations to use MATLAB as the action language, such
as a++ and a- -. For example, a++ is changed to a=a+1.

2-7

2 Test Harness

2-8

Assignment operations to use MATLAB as the action language, such as a+=expr,
a—=expr, a*=expr, and a/=expr. For example, a+=b is changed to a=a+b.

Evaluation operations to use MATLAB as the action language, such as a!=expr
and !a. For example, a!=b is changed to a~=b.

The editor inserts explicit casts for literal constant assignments. For example, if y
is defined as type single, then y=1 is changed to y=single(1).

Test Harness Construction for Specific Model Elements

Test Harness Construction for Specific Model Elements

A test harness consists of one or more source blocks that drive the component under test,
which drives one or more sink blocks. Test harness construction configures signal
attributes, function calls, data stores, and execution semantics. When possible, the test
harness matches signal attributes at the sources, sinks, and component interface. For
more information on selecting sources and sinks, see “Choosing Sources and Sinks” on
page 2-15.

Component
Under Test

h 4

'I

AN

Sources Signal Signal Sinks
conversion conversion

Signal Conversion

Signal conversion subsystems adapt the signal interface of the source and sink blocks to
the graphical interface of the component. The graphical interface of the component
includes input signals, output signals, and action, trigger, or enable inputs. The test
harness compiles the main model to determine signal attributes: data type, dimensions,
and complexity of each signal. Signal attributes are adapted to the sources during
harness construction in one of two ways:

1 Source blocks that can generate signals with the compiled attributes are configured
to do so.

2 If a source block cannot generate signals with the compiled attributes, signal
attribute blocks in the signal conversion subsystem adapt the output of the source
blocks. Signal attribute blocks include Reshape, Rate Transition and Data Type
Conversion blocks.

2-9

2 Test Harness

2-10

Function Calls
Function Call Drivers

If the component under test has function call inputs, a Test Sequence block source
generates function call inputs to the component, even if you select a different source
during harness creation. To override this behavior and connect function call inputs to
your selected source type, create the test harness with the sltest.harness.create
function, and set 'DriveFcnCallWithTestSequence' to false. For example:

sltest.harness.create('Model/FcnCallSubsystem', 'Source', 'From File',...
'DriveFcnCallWithTestSequence', false)

Function Call Outputs

Function call outputs of the component under test connect to Terminator blocks.

Physical Signal Connections

Components that accept or output physical signals are supported during harness
construction, but sources and sinks are not generated. You can add physical modeling
blocks to the test harness after construction.

Bus Signals

Test harnesses configuration for bus inputs and outputs depends on the bus connection
ability of the source or sink blocks:

1 Sources and sinks that can accept a bus signal are directly connected to the
component without modification.

2 If a source cannot output a bus signal, bus signals are automatically constructed from
individual bus elements in the signal conversion subsystem.

3 Ifasink cannot accept a bus signal, bus signal elements are expanded from the bus
signal in the signal conversion subsystem.

Non-Graphical Connections

In addition to the graphical interface of a component, Simulink supports several non-
graphical connections. Test harness construction also supports non-graphical
connections.

Test Harness Construction for Specific Model Elements

Goto-From connections

Goto-From block pairs that cross the component boundary are considered component
inputs or outputs.

* A From block without a corresponding Goto block in the component is considered a
component input signal. The test harness includes a source block with a corresponding
Goto block.

* A Goto block without the corresponding From block in the component is considered a
component output signal. The test harness includes a sink block with a corresponding
From block.

Data store memory

Data Store Read and Data Store Write blocks require a complete data store definition in
the test harness.

» Ifa Data Store Read or Data Store Write block lacks a corresponding Data Store
Memory block in the component, the test harness adds a Data Store Memory block.

* For a component containing only Data Store Read blocks, the test harness adds a
source block driving a Data Store Write block.

» For a component containing only Data Store Write blocks, the test harness adds a Data
Store Read block driving a sink block.

If global data store memory read or write usage cannot be determined, then Data Store
Readand Data Store Write blocks are not included in the test harness.

Simulink Function Definitions

If the component calls a Simulink Function that is not defined in the component, the test
harness adds a stub Simulink Function block matching the function call signature.

Export Function Models

Test harnesses contain a function-call scheduler for components that use the export
function modeling style. The scheduler is a Test Sequence block. Use the Test Sequence
block as a starting point to complete the scheduler in the test harness.

The scheduler Test Sequence block includes a step containing:

2-11

2 Test Harness

2-12

* A catalog of globally scoped Simulink Function blocks in the component.
* Alist of function-call triggers accessible at the component interface.

Harness construction honors periodic function-call triggers with appropriate decimation
of the function-call event in the Test Sequence block.

Test harnesses include Initialize, Terminate and Reset steps for models that
contain Initialize, Terminate and Reset event subsystems. You can include
Initialize, Terminate and Reset steps for other export-function models using the
'ScheduleInitTermReset' property of sltest.harness.create.

Execution Semantics

The execution behavior of a component depends on factors such as computed sample
times, solver settings, model configuration, and parameter settings. Execution behavior
also depends on run-time events such as function-call triggers and asynchronous events.
To handle these execution semantics, test harness construction:

Copies configuration parameter settings from the main model into the test harness.

2 Copies required parameter definitions from the main model workspace into the test
harness model workspace.

3 Copies data dictionary settings from the main model into the test harness.

Honors a limited subset of sample time settings using explicit source block
specifications and Rate Transition blocks.

Other factors, such as additional blocks in the harness and solver heuristics, can cause
test harness execution to differ from the main model. The graphical and compiled
interface of the component takes precedence over other execution semantics.

Sample Time Specification

Simulink supports an array of sample times, including types that are derived during
model compilation. Test harness construction supports periodic discrete, continuous, and
fixed-in-minor-step sample times with these considerations:

» Source blocks that support the desired rate are configured to do so, and the signal
conversion subsystem contains a Signal Specification block with the rate specification.

» Test harness construction does not configure source blocks that cannot support the
desired rate.

See Also

+ If the desired rate is periodic discrete or fixed-in-minor-step, the test harness
contains a Rate Transition block in the signal conversion subsystem.

+ Ifthe desired rate is continuous, the execution semantics are determined by the
solver. The signal conversion subsystem does not contain a Rate Transition block.

Other sample time specifications are ignored during test harness construction. In
those cases, solver settings determine execution behavior.

See Also

“Select Test Harness Properties” on page 2-14

2-13

2 Test Harness

Select Test Harness Properties

2-14

In this section...

“Create a Test Harness” on page 2-14

“Considerations for Selecting Test Harness Properties” on page 2-14
“Harness Name” on page 2-15

“Save Test Harnesses Externally” on page 2-15

“Choosing Sources and Sinks” on page 2-15

“Add Separate Assessment Block” on page 2-16

“Open Harness After Creation” on page 2-16

“Create without compiling the model” on page 2-16

“Create scalar inputs” on page 2-16

“Post-create callback method” on page 2-16

“Rebuild harness on open” on page 2-17

“Update Configuration Parameters and Model Workspace data on rebuild” on page 2-17
“Post-rebuild callback method” on page 2-17

“Synchronization Mode” on page 2-17

“Initialize/Terminate/Reset Behavior” on page 2-18

“Verification Modes” on page 2-18

“Change Harness Properties” on page 2-18

Create a Test Harness

To create a test harness for the top-level model, select Analysis > Test Harness >
Create for Model. To create a test harness for a subsystem, select the subsystem and
select Analysis > Test Harness > Create for <subsystem name>. Set test harness
properties using the Create Test Harness dialog box.

Considerations for Selecting Test Harness Properties

Before selecting test harness properties, consider the following:

* What data source you want to use for your test case input

Select Test Harness Properties

* How you want to view or store test output

* Whether you want to copy parameters and workspaces from the main model to the
harness

* Whether you plan to edit the component under test
* How you want to synchronize changes between the test harness and model

Except for sources and sinks, you can change harness properties later using the harness
properties dialog box. To change sources and sinks after harness creation, manually
remove the blocks from the test harness and replace them with new sources and sinks.

Harness Name

Test harnesses must use valid MATLAB filenames.

Save Test Harnesses Externally

This option controls how the model stores test harnesses. A model stores all its test
harnesses either internally or externally. If a model already has test harnesses, this item
states the harness storage type as Harnesses saved <internally|externally>.

* When cleared, the model saves test harnesses as part of the model SLX file.

* When selected, the model saves test harnesses in separate SLX files to the current
working folder, and adds a harness information XML file to the model folder. The
harness information file must remain in the same folder as the model.

See “Manage Test Harnesses” on page 2-30.

Choosing Sources and Sinks

In the Create Test Harness dialog box, under Sources and Sinks, select the source and
sink from the respective menus. The menus provide common sources and sinks, and you
can also use custom sources and sinks from the Simulink Sources or Sinks library. Select
Custom source or sink, and enter the path to the custom block, such as:

simulink/Sources/Sine Wave
simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

2-15

2 Test Harness

2-16

Add Separate Assessment Block

Select Add separate assessment block to include a separate Test Assessment block in
the test harness.

A Test Assessment block is a separate Test Sequence block configured with properties
commonly used for verifying the component under test. If you use a Test Sequence block
source, you can also author assessments directly in the Test Sequence block. See “Test
Assessment Reuse” on page 3-79.

Open Harness After Creation

Clear Open Harness After Creation to create the test harness without opening it. This
can be useful creating multiple test harnesses in succession.

Create without compiling the model

When you select this property, the main model does not compile when generating the test
harness. The test harness does not contain conversion subsystems, configuration

parameters, or model workspace data for the component under test. The test harness can
require additional modification for it to compile, such as adding signal conversion blocks.

Create scalar inputs

When you select this property, the test harness creates scalar inputs for multidimensional
signals. The individual scalar inputs are reshaped to match the dimension of the input
signals to the component under test. This option applies to test harnesses with Inport,
Constant, Signal Builder, From Workspace, or From File source blocks.

Post-create callback method

You can customize your test harness using a post-create callback, which is a function that
runs after the harness is created. For example, your callback can set up signal logging,
add custom blocks, or change the harness simulation times. For more information, see
“Customize Test Harnesses” on page 2-42.

Select Test Harness Properties

Rebuild harness on open

When you select this property, the test harness rebuilds every time you open it. For
details on the rebuild process, see “Synchronize Changes Between Test Harness and
Model” on page 2-55.

Update Configuration Parameters and Model Workspace data
on rebuild

When you select this property, configuration parameters and model workspace data
update when you rebuild the harness. For details on the rebuild process, see
“Synchronize Changes Between Test Harness and Model” on page 2-55.

Post-rebuild callback method

You can customize your test harness using a post-rebuild callback, which is a function
that runs after the harness is rebuilt. For example, your callback can set up signal
logging, add custom blocks, or change the harness simulation times. For more
information, see “Customize Test Harnesses” on page 2-42.

Synchronization Mode

Synchronization mode controls when changes to the component under test are synced to
the main model, and when changes to the harness owner are synced into a test harness.

* On harness open — The component in the test harness is updated when the harness
opens. Synchronizing on harness open is useful if you update the design in the main
model.

* On harness close — The component in the main model is updated when the harness
closes. Synchronizing on harness close is useful if you make design changes in the test
harness. Avoid synchronizing on harness close if you want to prevent inadvertent
changes to the component in the main model.

* During push — Synchronization occurs manually, by selecting Analysis > Test
Harness > Push Component and Parameters to Main Model.

* During rebuild — Synchronization occurs manually, by selecting Analysis > Test
Harness > Rebuild Harness from Main Model.

2-17

2 Test Harness

2-18

Initialize/Terminate/Reset Behavior
Generate scheduler for Initialize, Reset, and Terminate tasks

Testing a model with initialize, terminate, or reset behavior can require calling Initialize,
Terminate, or Reset subsystems to set the desired state. You can use the Test Sequence
block to schedule function calls using the send () command and function-call outputs.

You can automatically create a Test Sequence block configured to schedule function calls
to Initialize, Terminate, or Reset inputs. When you create a test harness, select Generate
scheduler for Initialize, Reset, and Terminate tasks in the Advanced Properties tab
of the create harness dialog box. After test harness creation, the Test Sequence block
contains template function calls for use in your test sequence.

Verification Modes

The test harness verification mode determines the type of block generated in the test
harness.

* Normal: A Simulink block diagram.

* Software-in-the-Loop (SIL): The component under test references generated
code, operating as software-in-the-loop. Requires Embedded Coder®.

* Processor-in-the-Loop (PIL): The component under test references generated
code for a specific processor instruction set, operating as processor-in-the-loop.
Requires Embedded Coder.

Note Keep the SIL or PIL code in the test harness synchronized with the latest
component design. If you select SIL or PIL verification mode without selecting Rebuild
harness on open, your SIL or PIL block code might not reflect recent updates to the
main model design. Regenerate code for the SIL or PIL block in the test harness by
selecting Analysis > Test Harness > Rebuild Harness from Main Model.

Change Harness Properties

Click the badge in the test harness block diagram and click Test harness properties
to open the harness properties dialog box.

See Also

See Also

Test Sequence | “Synchronize Changes Between Test Harness and Model” on page 2-55

2-19

2 Test Harness

Test Harness Parameters and Signals

In this section...

“Test Harness Generation Without Compilation” on page 2-20
“Signal Conversion Subsystem” on page 2-20

Test Harness Generation Without Compilation

You can generate a test harness without compiling the main model. For example, this
option can be useful if you are prototyping a design that cannot yet compile. If the main
model is not compiled when generating a test harness:

* Parameters are not copied to the test harness workspace.
* The main model configuration is not copied to the test harness.
* The test harness does not contain conversion subsystems.

To execute these processes, you can rebuild the harness when you are ready to compile
the main model. For more information, see “Synchronize Changes Between Test Harness
and Model” on page 2-55.

Signal Conversion Subsystem

Conversion subsysten
L
—_—»

.-I
™

A signal conversion subsystem

2-20

Test Harness Parameters and Signals

» Contains signal specification blocks to check signal properties to and from the
component under test. These properties include data type, sample time, bus
properties, dimension, and complexity.

* Contains blocks that simplify signal routing in the test harness block diagram, such as
Goto and Function-Call Split blocks.

Signal types must match the signal specification for test harnesses to compile. If you get a
compile error related to the signal conversion subsystem, check the signal properties and
consider modifying the test harness design. For example:

* Add conversion blocks to your test harness outside the conversion subsystem.

» Edit the conversion subsystem. The subsystem is locked by default. To unlock it, right-
click the subsystem, select Block Parameters, then set Read/Write permissions to
ReadWrite.

Note When you rebuild the test harness, the signal conversion subsystems are rebuilt.
If you modify a conversion subsystem, disable automatic test harness rebuild to avoid
losing your modifications when you open the test harness. See “Select Test Harness
Properties” on page 2-14.

2-21

2 Test Harness

Refine, Test, and Debug a Subsystem

2-22

In this section...

“Model and Requirements” on page 2-22

“Create a Harness for the Controller” on page 2-24
“Inspect and Refine the Controller” on page 2-26

“Add Test Inputs and Test the Controller” on page 2-26
“Debug the Controller” on page 2-27

Test harnesses provide a development and testing environment that leaves the main
model design intact. You can test a functional unit of your model in isolation without
altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air
conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements

1 Access the model. Enter

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx
sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

Refine, Test, and Debug a Subsystem

delay delay
delay Write1

Time delay sec

DeltaT_fan DeltaT_fan

DT_fa
DEM fan temp —an Wirite2
DeltaT_pumy D&ItaT _pump
OT_pum
DS pump temp -Pame Writed
(2) — Tt — » control_in
In
control_out e Troom
— M Troom_in Tuutside
In2
Controller Plart
Zem-0rder
Hold

Copyright 19902014 The M athWors Inc.

In the example model:

* The controller accepts the room temperature and the set temperature inputs.
* The controller output is a bus with signals controlling the fan, heat pump, and the
direction of the heat pump (heat or cool).

* The plant accepts the control bus. The heat pump and the fan signals are Boolean, and
the heat pump direction is specified by +1 for cooling and -1 for heating.

2-23

2 Test Harness

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

Temperature condition System Fan Pump Pump
state |command| command | directio
n

|[Troom - Tset| < DeltaT fan idle 0 0 0

DeltaT fan <= |Troom - Tset| < fan only 1 0 0

DeltaT pump

|[Troom - Tset| >= DeltaT pump cooling 1 1 -1

and Tset < Troom

[Troom - Tset| >= DeltaT pump heating 1 1 1

and Tset > Troom

Create a Harness for the Controller

1 Right-click the Controller subsystem and select Test Harness > Create for
‘Controller’.

2 Set the harness properties:
In the Basic Properties tab:

* Name: devel harness 1

* Clear Save test harness externally

* Sources and Sinks: None and Scope

* Clear Add separate assessment block
* Select Open harness after creation

2-24

Refine, Test, and Debug a Subsystem

Create Test Harness

being created. After creation, use the block badge to find and open harnesses.
Component under test: sltestHeatpumpExample/Controller

Basic Properties | Advanced Properties I Description |

Specify the properties of the test harness. The component under test is the system for which the harness is

==l

Name: devel_harnessl
[C] save test harnesses externally More information

Sources and Sinks

> [camponentwcer ot | —>

[7] Add separate assessment block

Open harness after creation

9 [

OK H Cancel][Help

Click OK to create the test harness.

control_out

=
4 = [T

Caontrolier
Signal spac
DSM fan t=rmp DeltaT_fan | DeltaT_fan and routing
DSM fan temp
DSM pump temp DelaT_pump | ‘ DeltaT_pump |
DSM pump temp

Time delay sec

Time delay sec
Signal spec.

and routing

2 Test Harness

Inspect and Refine the Controller

1 In the test harness, double-click Controller to open the subsystem.
2 Connect the chart to the Inport blocks.

R el hrvets 1 b [y fConnale B =

.

fan_cmd “_1
T_req
%mp_ﬁn d :i
T

control_out

——{T_meas

pump_dir
= o

" controller_chart
Troom_in

3 In the test harness, click the Save button to save the test harness and model.

Add Test Inputs and Test the Controller

1 Navigate to the top level of devel harness 1.

2 Create a test input for the harness with a constant Tset and a time-varying Troom.
Connect a Constant block to the Tset input and set the value to 75.

3 Add a Sine Wave block to the harness model to simulate a temperature signal.
Connect the Sine Wave block to the conversion subsystem input Troom in.

4 Double-click the Sine Wave block and set the parameters:
* Amplitude: 15
* Bias: 75
* Frequency: 2*pi/3600
¢ Phase (rad): 0
* Sample time: 1

2-26

Refine, Test, and Debug a Subsystem

* Select Interpret vector parameters as 1-D.

5 Connect Inport blocks to the Data Store Write inputs.

T5 »

Constant

\, >

Sine Wave

Teet

control_out

Troom_in

DSM fan temp

In1

DeltaT_fan

Controller

DieltaT_fan

DSM fan temp

CSM pump temp

DeltaT_pump

DeltaT_pump

Time delay sec

Signal spec
and routing

» delay

DSM pump temp

delay

Time delay sec

Signal spec
and routing

6 In the Configuration Parameters dialog box, in the Data Import/Export pane, select
Input and enter u. u is an existing structure in the MATLAB base workspace.

In the Solver pane, set Stop time to 3600.

Open the scope in the test harness and change the layout to show three plots.

Click Run to simulate.

Debug the Controller

1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |

Troom - Tset| < DeltaT fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be

changed for IDLE.

2-27

2 Test Harness

In the harness model, open the Controller subsystem.
Open controller chart.

In the IDLE state, fan cmd is set to return 1. Change fan cmd to return 0. IDLE is
now:

IDLE
entry:
fan _cmd =
pump_cmd
pump _dir

’

i o

5 Simulate the harness model again and observe the outputs.

2-28

See Also

6 fan_cmd now meets the requirement to equal 0 at IDLE.

See Also
Related Examples

. “Test a Model Component Using Signal Functions” on page 3-69
. “Test Downshift Points of a Transmission Controller” on page 3-72

2-29

2 Test Harness

Manage Test Harnesses

2-30

In this section...

“Internal and External Test Harnesses” on page 2-30

“Manage External Test Harnesses” on page 2-30

“Convert Between Internal and External Test Harnesses” on page 2-31
“Preview and Open a Test Harness” on page 2-33

“Find Test Cases Associated with a Test Harness” on page 2-34
“Export Test Harnesses to Separate Models” on page 2-34

“Clone and Export a Test Harness to a Separate Model” on page 2-35
“Delete Test Harnesses Programmatically” on page 2-37

“Move and Clone Test Harnesses” on page 2-39

Internal and External Test Harnesses

You can save test harnesses internally as part of your model SLX file, or externally in
separate SLX files. A model stores all test harnesses either internally or externally; it is
not possible to use both types of harness storage in one model. You select internal or
external test harness storage when you create the first test harness. If your model already
has test harnesses, you can convert between the harness storage types.

If you store your model in a change control system, consider using external test
harnesses. External test harnesses enable you to create or change a harness without
changing the model file. If you plan to share your model often, consider using internal test
harnesses to simplify file management. Creating or changing an internal test harness
changes your model SLX file. Both internal and external test harnesses offer the same
synchronization, push, rebuild, and badge interface functionality.

See “Select Test Harness Properties” on page 2-14.

Manage External Test Harnesses

Harnesses stored externally use a separate SLX file for each harness, and a
<modelName> harnessInfo.xml file containing metadata linking the model and the
harnesses. Changing test harnesses can change the harnessInfo.xml file.

Manage Test Harnesses

Follow these guidelines for external test harnesses:

Warning Do not delete the harnessInfo.xml file. Deleting the harnessInfo.xml file
terminates the relationship between the model and harnesses, which cannot be
regenerated from the model.

* Keep the harnessInfo.xml file in the same folder as the main model. If the
harnessInfo.xml file and the model are in separate folders, the main model opens
but does not present the test harnesses.

» Directories containing test harness SLX files must be on the MATLAB path.

» Ifyou convert internal test harnesses to external test harnesses, the new SLX files
save to the current working folder.

+ Ifyou convert external test harnesses to internal test harnesses, the external SLX files
can be anywhere on the MATLAB path.

» If your model uses external test harnesses, only create a copy of your model using File
> Save As from the model menu. Using File > Save As copies external test harnesses
to the destination folder of the new model and keeps the harness information current.

Copying the model file on disk will not copy external harnesses associated with the
model.
* Only change or delete test harnesses using the Simulink Ul or commands:
* To delete test harnesses, use the thumbnail Ul or the sltest.harness.delete
command.

+ To rename test harnesses, use the harness properties UI or the
sltest.harness.set command.

+ To make a copy of an externally saved test harness, use the
sltest.harness.clone command or save the test harness to a new name using
File > Save As.

Deleting or renaming harness files outside of Simulink causes an inaccurate
harnessInfo.xml file and problems loading test harnesses.

Convert Between Internal and External Test Harnesses

You can change how your model stores test harnesses at different phases of your model
lifecycle. For example:

2-31

2 Test Harness

2-32

* Develop your model using internal test harnesses so that you can more easily share
the model for review. When you complete your design and place the model under
change control, convert to external harnesses.

» Use the change-controlled model as the starting point for a new design. Test the
existing model with external harnesses to avoid modifying it. Then, create a copy of
the existing model. Convert to internal harnesses for the new development phase.

To change the test harness storage to external (or internal):

1 Navigate to the top of the main model.

2 Select Analysis > Test Harness > Convert To External (Internal) Harnesses.

3 A dialog box provides information on the conversion procedure and the affected test
harnesses. Click Yes to continue.

The harnesses are converted.

4 The conversion to external test harnesses creates an SLX file for each test harness
and a harness information XML file <modelName> harnessInfo.xml.

Current Folder

Name

heading_mode_harness.she
roll_mode_harness.sh
roll_reference_harnessl.sk
roll_reference_logged_data_harness.ske
sltestExternalTestHarnessExample.sh
top_maodel_harness.sh
sltestExternalTestHarnessExample_harnessinfo.xml

[[e® [o¥ [o% o7 [o¥ [a¥

Test harnesses
Main model
Harmess information file

External TestHamesses
This example model contains testhamesses siored externallyin separate 51X fles fom the model

e Conoies Auiogh

josa_coma

fosa F

pem—
(o ———#rsimer
el
@ = =
= a
(: —————mTAs
=
e L o
© 7
s
= —]
e e
1
=
[M
z
-
o "
AP Eng
> e
Bl

a3 RoiMoae

Inversely, conversion to internal test harnesses moves the test harness SLX files and
the harnessInfo.xml file.

Copyright 2015 The M athiores ine

Manage Test Harnesses

Current Folder

R | Intemal Test Hamesses
= = Tampieei] This example modsl contsins st hamesses sored nemallyss partofthe model SLX e
it nal arnessExample.s!
= oo cocseencl
Main model, which oG Ret A e e
Son 1253
includes test hamesses = Skt
CO—Hme
TAE
meaging Moo P AZbugeConrolier Auoni
& H s.cm
i [
T, s
= s
Co——frenre
View and manage test harnesses in this model. i 1 :
I : I P
Filter by harness owner: LA{I = B
BT
5
Froperties Delei Ag.?
i .. | Properties Delete B e
;m\l reference h.. Propertes Delate AR
|
|toll reference Io... Properties Delete
\roll_mode hamess Propertias Celete
|heading mode ., Properties Delete Coourign 3015 Tre M smieris T

Preview and Open a Test Harness

When a model component has a test harness, a badge appears in the lower right of the

block. Click the badge to preview test harnesses, and click a thumbnail image to open the
harness.

Ly - - - LPLILILL LU e 1 e]
| | ey Vehich
o sf car Hamess3 |
sf_car_Harmnessl sf_car_Hamess? | - =
- Intermnal Test Harnesses Open test harness|
(=] e F

When a model block diagram has a test harness, click the pullout icon in the model
canvas to preview the test harnesses. To open the harness, click a thumbnail.

2-33

2 Test Harness

2-34

sltestPro...Hamess2 sltestPro...Hamess3 sltestPro...Hamess4 sltestProj...Controller

Internal Test Harnesses Interface
100% FixedStepDiscrete

Find Test Cases Associated with a Test Harness

To list open test cases that refer to the test harness, click the badge " in the test
harness canvas. You can click a test case name and navigate to the test case in the Test
Manager.

Test harness properties ...

Open test cases:

sltestProjectorFanSpeedTestSuite : Fan Speed = 2300
sltestProjectorFanSpeedTestSuite : Fan Speed = 1800
sltestProjectorFanSpeedTestSuite : Fan Speed = 1300
sltestProjectorFanSpeedTestSuite : Fan Speed = 800

=3

Export Test Harnesses to Separate Models

You can export test harnesses to separate models, which is useful for archiving test
harnesses or sharing a test harness design without sharing the model.

* To export an individual test harness:

Manage Test Harnesses

From the test harness menu, select Analysis > Test Harness > Detach and
Export Harness.

A dialog box confirms the harness export. Click OK.
Enter a file name for the separate model.

The harness converts to a separate model. Converting removes the harness from
the main model and breaks the relationship to the main model.

To export all harnesses in a model:

Navigate to the top level of the test harness.
Select no blocks.

From the model menu, select Analysis > Test Harness > Detach and Export
Harnesses.

A dialog box confirms the harness export. Click OK.

The harnesses convert to separate models. Converting removes the harnesses
from the main model and breaks the relationships to the main model.

See sltest.harness.export.

Clone and Export a Test Harness to a Separate Model

This example demonstrates cloning an existing test harness and exporting the cloned
harness to a separate model. This can be useful if you want to create a copy of a test
harness as a separate model, but leave the test harness associated with the model
component.

High-level Workflow

1

If you don't know the exact properties of the test harness you want to clone, get them
using sltest.harness.find. You need the harness owner ID and the harness name.

Clone the test harness using sltest.harness.clone.

Export the test harness to a separate model using sltest.harness.export. Note that
there is no association between the exported model and the original model. The
exported model stands alone.

2-35

2 Test Harness

Open the Model and Save a Local Copy

model = 'sltestTestSequenceExample';
open_system(model)

Testing Downshift Points of a Transmission Controller

This example shows how to create a Test Harmess with a Test Sequance block as a source.

GO+l

brake

2)—>fiwotte]
G B ot
[throttle] throttle Cutd S

:é

shift_controller wehicle

Copyright 2016 The MathWorks, Inc.

Save the local copy in a writable location on the MATLAB path.

Get the Properties of the Source Test Harness

properties sltest.harness.find([model '/shift controller'])

properties
struct with fields:

model: 'sltestTestSequenceExample'
name: ‘'controller harness'
description: "'
type: 'Testing'
ownerHandle: 12.0017
ownerFullPath: 'sltestTestSequenceExample/shift controller'
ownerType: 'Simulink.SubSystem'
isOpen: 0O
canBeOpened: 1

2-36

Manage Test Harnesses

lockMode:

verificationMode:

saveExternally:

rebuildOnOpen:

rebuildModelData:

postRebuildCallback:

graphical:

origSrc: 'Test Sequence'

origSink: 'Test Assessment'

synchronizationMode: 0

[N oNoNoNoNO]

Clone the Test Harness

Clone the test harness using sltest.harness.clone, the ownerFullPath and the name
fields of the harness properties structure.

sltest.harness.clone(properties.ownerFullPath,properties.name, 'ControllerHarness2"')

Save the Model

Before exporting the harness, save changes to the model.
save_system(model)

Export the Test Harness to a Separate Model

Export the test harness using sltest.harness.export. The exported model name is
ControllerTestModel.

sltest.harness.export([model '/shift controller'], 'ControllerHarness2',...
"Name', 'ControllerTestModel')

clear('model"')
clear('properties')
close system('sltestTestSequenceExample',0)

Delete Test Harnesses Programmatically

This example shows how to delete test harnesses programmatically. Deleting with % the
programmatic interface can be useful when your model has multiple test harnesses at
different hierarchy levels. This example demonstrates creating four test harnesses, then
deleting them.

2-37

2 Test Harness

1. Open the model

open_system('sltestCar');

Simulink® Test™ model sltestCar

brake
impaller torque
| Ti
Ne
| throttle
Inputs Engine
FPassing Maneuver
Erake > Ne ol BB 8 |
. gt
gear %
gear " | |
Throttie > Tout
throttle | Mout output torqua
shift_logic transmission “ehick
transmission spesed

vehicle speed

Caopyright 1897-2017 The MathWaorks, Inc.

2. Create two harnesses for the transmission subsystem, and two harnesses for the
transmission ratio subsystem.

'sltestCar/transmission');
'sltestCar/transmission');
'sltestCar/transmission/transmission ratio');
'sltestCar/transmission/transmission ratio');

sltest.harness.create
sltest.harness.create
sltest.harness.create
sltest.harness.create

_~ e~~~

3. Find the harnesses in the model.

test harness list sltest.harness.find('sltestCar"')

test harness list
1x5 struct array with fields:

model
name

2-38

Manage Test Harnesses

description

type

ownerHandle
ownerFullPath
ownerType

isOpen

canBeOpened
lockMode
verificationMode
saveExternally
rebuildOnOpen
rebuildModelData
postRebuildCallback
graphical

origSrc

origSink
synchronizationMode

4. Delete the harnesses.

for k = 1:length(test harness list)
sltest.harness.delete(test harness list(k).ownerFullPath,...
test harness list(k).name)

end

close system('sltestCar',0);

Move and Clone Test Harnesses

Simulink Test gives you the ability to move/clone test harnesses from a source owner to a
destination owner without having to compile the model. You can move or clone:

* Subsystem harnesses across subsystems. The destination subsystem could also be in a
different model.

* Harnesses for library components across libraries.

To move or clone harnesses, right-click the Simulink canvas and select Test Harness >

Manage Test Harnesses. The Manage Test Harness dialog box opens and lists the test

harnesses associated with the subsystem/block specified in Filter by harness owner.
Click Actions to access the Move and Clone options.

2-39

2 Test Harness

-
Manage Test Harnesses for 'sltestHeatpumpExample’ u

View and manage test harnesses in: sltestHeatpumpExample
Filter by harness owner: [sltestHeatpumpExamplefCunh’dier -]
i Name i Owner Path
sltestHeatpumpExample Harnessl JController

Select All

Actions ...
Properties
Maowve

Clone

2-40

See Also

r Move Harness ﬁﬁ
Destination Path:

Destination Path:
4 sltestHeatpumpExample
Plant
4 Controller
controller_chart

MNew Harness Name: sltestHeatpumpExample_Harness1

[OK] [Cancel

L™ -

Select the destination path and name your test harness.

See Also

Functions

sltest.harness.clone | sltest.harness.create|sltest.harness.delete |
sltest.harness.export|sltest.harness.find | sltest.harness.load |
sltest.harness.move | sltest.harness.open

2-41

2 Test Harness

Customize Test Harnesses

2-42

In this section...

“Callback Function Definition and Harness Information” on page 2-43
“How to Display Harness Information struct Contents” on page 2-45
“Customize a Test Harness to Create Mixed Source Types” on page 2-45
“Test Harness Callback Example” on page 2-47

You can customize a test harness by using a function that runs after creating or
rebuilding the test harness. In the function, script the commands to customize your test
harness. For example, the function can

Connect custom source or sink blocks.

Add a plant subsystem for closed-loop testing.
Change the configuration set.

Enable signal logging.

Change the simulation stop time.

The test harness customization function runs as a test harness post-create callback or
post-rebuild callback. To customize a test harness using a callback function:

1
2

Create the callback function.

In the function, use the Simulink programmatic interface to script the commands to
customize the test harness. For more information, see the functions listed in “Model
Editing Fundamentals” (Simulink).

Specify the function as the post-create or post-rebuild callback:

* For a new test harness,

* Ifyou are using the UI, enter the function name in the Post-create callback
method or Post-rebuild callback method in the Advanced Properties of
the harness creation dialog box.

* Ifyou are using sltest.harness.create, specify the function as the
PostCreateCallback or PostRebuildCallback value.

* For an existing test harness,

* Ifyou are using the UI, enter the function name in Post-rebuild callback
method in the harness properties dialog box.

Customize Test Harnesses

* Ifyou are using sltest.harness.set, specify the function as the
PostRebuildCallback value.

For more information on test harness properties, see “Select Test Harness
Properties” on page 2-14.

Callback Function Definition and Harness Information

The callback function declaration is
function myfun(x)

where myfun is the function name and myfun accepts input x. X is a struct of information
about the test harness automatically created when the test harness uses the callback. You
can choose the function and argument names.

For example, define a harness callback function harnessCustomization.m:
function harnessCustomization(harnessInfo)

% Script commands here to customize your test harness.

end

In this example, harnessInfo is the struct name and harnessCustomization is the
function name. When the create or rebuild operation calls harnessCustomization,
harnessInfo is populated with information about the test harness, including handles to
the test harness model, main model, and blocks in the test harness.

For example, using harnessCustomization as a callback for the following test harness:

i | Fhi M

» M AP eng Phi Rt > » 1)

CHCHC

¥ Turn Knab) I
Signal spec.

Signal spec. Roll Reference and routing

BN noubng

2-43

2 Test Harness

populates harnessInfo with handles to three sources, one sink, the main model, harness

model, harness owner, component under test, and conversion subsystems:

harnessInfo =

struct with fields:

MainModel:

HarnessModel:

Owner:

HarnessCUT:
DataStoreMemory:
DataStoreRead:
DataStoreWrite:

Goto:

From:

GotoTag:
SimulinkFunctionCaller:
SimulinkFunctionStub:
Sources:

Sinks:

AssessmentBlock:
InputConversionSubsystem:
OutputConversionSubsystem:
CanvasArea:

2.0001
1.1290e+03
17.0001
201.0110
[]
[

[R S

.1530e+03 1.1540e+03 1.1550e+03]
.1630e+03

[]

1.1360e+03

1.1560e+03

[215 140 770 260]

[
[
[
[
[
[
[
1

Use the struct fields to customize the test harness. For example:

* To add a Constant block named ConstInput to the test harness, get the name of the

test harness model, then use the add_block function.

harnessName =

get param(harnessInfo.HarnessModel, 'Name');

2-44

block = add block('simulink/Sources/Constant', [harnessName '/ConstInput'l]);
To get the port handles for the component under test, get the 'PortHandles'
parameter for harnessInfo.HarnessCUT.

CUTPorts = get _param(harnessInfo.HarnessCUT, 'PortHandles");

To get the simulation stop time for the test harness, get the 'StopTime' parameter

for harnessInfo.HarnessModel.

st = get_param(harnessInfo.HarnessModel, 'StopTime");

To set a 16 second simulation stop time for the test harness, set the 'StopTime'
parameter for harnessInfo.HarnessModel.

Customize Test Harnesses

set param(harnessInfo.HarnessModel, 'StopTime', '16"');

How to Display Harness Information struct Contents

To list the harness information for your test harness:
1 In the callback function, add the line

disp(harnessInfo)

Create or rebuild a test harness using the callback function.

When you create or rebuild the test harness, the harness information structure
contents are displayed on the command line.

wWN

Customize a Test Harness to Create Mixed Source Types

This example harness callback function connects a Constant block to the third component
input of this example test harness.

i ¥ Fhi

b g 4P eng Phi Ret

CHCHG

Roll Reference and routing

¥ Turn Knob)
Signal spec.

The function follows the procedure:

Get the harness model name.

Add a Constant block.

Get the port handles for the Constant block.

Get the port handles for the input conversion subsystem.

Get the handles for lines connected to the input conversion subsystem.
Delete the existing Inport block.

Delete the remaining line.

Nounh~r,WNEH

2-45

2 Test Harness

8 Connect a new line from the Constant block to input 3 of the input conversion
subsystem.

function harnessCustomization(harnessInfo)

% Get harness model name:
harnessName = get param(harnessInfo.HarnessModel, 'Name');

% Add Constant block:
constBlock = add block('simulink/Sources/Constant', [harnessName '/ConstInput'l]l);

% Get handles for relevant ports and lines:

constPorts = get param(constBlock, 'PortHandles');

icsPorts = get param(harnessInfo.InputConversionSubsystem, 'PortHandles');
icsLineHandles = get param(harnessInfo.InputConversionSubsystem, 'LineHandles');

% Delete the existing Inport block and the adjacent line:
delete block(harnessInfo.Sources(3));
delete line(icsLineHandles.Inport(3));

% Connect the Constant block to the input conversion subsystem:
add_line(harnessInfo.HarnessModel, constPorts.Outport,icsPorts.Inport(3),...
'autorouting', 'on');

end
{1 L | Fhi
1 {2 z » AP ey P Rl »
Constinput
Tum Ench

Signal spec
- and routing
Signal spec Rall Reterence :

and routing

2-46

Customize Test Harnesses

Test Harness Callback Example

This example shows how to use a post-create callback to customize a test harness. The
callback changes one harness source from an Inport block to Constant block and enables
signal logging in the test harness.

The Model

In this example, you create a test harness for the Roll Reference subsystem.

open_system('RollAutopilotMdlRef")

Requirements-based Testing for Controller Development

This model is used to show how to perform requiremenis-based testing using test harnesses, Test Sequence blocks, and the test manager.

To view the demo, enter qui nts ing. pilotDemo in MATLAB(R).
double H_BadingModeAuhopil;H Roll Autopilot
ﬂ: Psi Ref Author: The MathWorks, Inc.
HDG Ref Model Version: 1.214
Date: Tue Feb 06 23:05:40 2018
double double ‘Copyright MathWorks 2017
(2)————»Fsi Phi Cmd
- doubla
Fsi
double i
—_— »
doubla
TAS
baolean Heading Mode y—_]? AttitudeComrollerAubopiI;
6 J vl 1) - # Dizp_Cmd
—H—‘_I phiCmd doubla
HDG Mode -
double Mode switch
o - P dnuble
Fhi Surf_Cmd Lt
double o
double - » double
P : ' » il Crmd
Engaged
» P boalean ZEM Eng switch
baoalean . Basic Roll Mode
5 J | AP eng Phi Ref
AP Eng double
—b Tum Knob
Turn Knob
[Rall Reference
RollAutopilotMdIRef.slx
Copyright 2017 The MathWorks Inc.

Get Path to the Harness Customization Function

cbFile = fullfile(matlabroot, 'examples', 'simulinktest', 'main', ...
"harnessSourcelLogCustomization.m');

2-47

2 Test Harness

2-48

The Customization Function and Test Harness Information

The function harnessSourcelLogCustomization changes the third source block, and
enables signal logging on the component under test inputs and outputs. You can read the
function by entering:

type(cbFile)

The function uses an argument. The argument is a struct listing test harness information.
The information includes handles to blocks in the test harness, including:

* Component under test

* Input subsystems

* Sources and sinks

* The harness owner in the main model

For example, harnessInfo.Sources lists the handles to the test harness source blocks.

Create the Customized Test Harness

1. Copy the harness customization function to the temporary working directory.

copyfile(cbFile, tempdir);
cd(tempdir);

2. In the Rol1AutopilotMd1Ref model, right-click the Roll Reference subsystem
and select Test Harness > Create for Roll Reference.

3. In the harness creation dialog box, for Post-create callback method, enter
harnessSourceLogCustomization.

4. Click OK to create the test harness. The harness shows the signal logging and
simulation stop time specified in the callback function.

You can also use the sltest.harness.create function to create the test harness,
specifying the callback function with the 'PostCreateCallback' name-value pair.

sltest.harness.create('RollAutopilotMdlRef/Roll Reference', ...
'Name', 'LoggingHarness', ...
'PostCreateCallback', 'harnessSourcelLogCustomization');

sltest.harness.open('RollAutopilotMdlRef/Roll Reference', 'LoggingHarness');

See Also

{1} > -
Phi H
1 €D > #| AP eng Phi Ref > w1)
Constinput AP eng Phi Ref
Tum Knob
»
Signal spec.
Roll Referance oafd 'cu[lJin-g
Signal spec.
o and routing

close system('RollAutopilotMdlRef"',0);

See Also

sltest.harness.create | sltest.harness.set

Related Examples
. “Select Test Harness Properties” on page 2-14

2-49

2 Test Harness

Create Test Harnesses from Standalone Models

2-50

In this section...

“Test Harness Import Workflow” on page 2-50
“Harness Import Considerations” on page 2-51

“Import a Standalone Model as a Simulink® Test™ Harness” on page 2-52

For testing, a common model architecture uses a Signal Builder block to pass test inputs
to a copy of a subsystem or a Model block referencing your main model. This architecture
is an example of a standalone model designed for testing. Standalone test models include
models created by Simulink Coverage™, Simulink Design Verifier™, or custom models.

You can simplify testing by importing standalone models to your main model as Simulink
Test test harnesses. Importing standalone models as test harnesses enables
synchronization and management features, allowing you to

+ Iterate on your design, using model - harness synchronization to update your design.
* Manage test harnesses, using the UI and programmatic interface.

» Establish clear ownership of a test harness by a model, subsystem, or library being
tested.

Test Harness Import Workflow

Before importing a model as a test harness, determine:

* The model or component to associate the test harness with, which can be a top-level
model, a subsystem, or a linked block.

* The path to the model to be imported.

* In the model to be imported, the component that is tested. In the new test harness,
this component links to the owner component in the main model. You can synchronize
design changes when the test harness is open or closed.

For example, this model uses a Signal Builder block to pass test inputs to the
Controller subsystem, and a subsystem to verify the Controller output. The
Controller subsystem is tested.

Create Test Harnesses from Standalone Models

Simulink Test Basic Cruise Control Verification

Shest1 Actual_spesd b——
Switches_enable |-—— o
throt = 1)
Switches_brake —— throt
/\ #|InBus
Switches_set ——f
Switches_inc ——» target b®
target
Swilches dec—»
. Controller
Inputs Size-Type
\—U Throttle_Out

Safety Properties

This model demonstratas the output of Model Venfication blocks to Simulstion Data Inspector and the Test Manager.
The cruise controller outputs the tnattle value based on the difference between the actual and the target speeds.

Copyright 2006-2017 The MathWorks, Inc.

Harness Import Considerations

You cannot create a test harness by importing

» Libraries
* Models that have existing test harnesses
* Models with unsaved changes. Save open models before importing.

When importing, consider the block type in the main model and the standalone model:

* For a user-defined function block in the main model (such as an S-Function block), the
tested component in the standalone model must be the same block type.

» For a top-level main model, the tested component in the standalone model can be a
Model block or a subsystem.

2-51

2 Test Harness

» For a subsystem in the main model, the tested component in the standalone model can
be a subsystem, Model block, or user-defined function block.

* For a Model block in the main model, the tested component in the standalone model
can be a Model block or a subsystem.

Import a Standalone Model as a Simulink® Test™ Harness

This example shows how to import a standalone test model to create a test harness in
Simulink Test.

The Main Model and the Harness Model

The main model sltestBasicCruiseControl is a simple cruise control system, with
root import and output blocks.

Simulink Test: Basic Cruise Control

throt %{D
throt
@ #(InBus
InBus
target -"E'@
target

Controller

The speed controller takes as input the sensor data, and
outputs the throttle value based on the difference between
the actual and the target speeds.

Caopyright 2006-2017 The MathWarks, Inc.

2-52

Create Test Harnesses from Standalone Models

The standalone test model contains a Signal Builder block driving a copy of the
Controller subsystem, with a subsystem verifying that the throttle output goes to 0 if
the brake is applied for three consecutive time steps.

Simulink Test Basic Cruise Control Verification

Shest1 Actual_spesd f—0—
Switches_enabla - »
throt 1)
Switches_brake ——p» throt
/\ ¥ InBus
Switches_sat ——
Switches_ing p———» target b@
target
Switches_dec|——
. Controller
Inputs Size-Type
LD Throttle_Out

Safety Properties

This model demonstrates the output of Model Verification blocks to Simulation Data Inspecior and the Test Managsr.
The cruise controller outputs the trottle value basad on the difference between the actual and the target speeds.

Copyright 2006-2017 The MathWorks, Inc.

Create a Test Harness from the Standalone Model

1. In the main model, right click the Controller subsystem and select Test Harness >
Import for 'Controller'.

2. Set the following harness properties:

* Name: VerificationSubsystemHarness
* Clear Save test harness externally

2-53

2 Test Harness

* Simulink model to import: Click Browse and select
sltestCruiseControlHarnessModel.

* Component under Test in imported model: Controller
Click OK.

A test harness is created from the standalone model, owned by the Controller
subsystem in the main model Click the badge to preview the test harness.

throt »(1)

throt
C1 5 » InBus
InBus

target »(2)
target
cqmml':'r'_';ilicaliuﬁﬁ l.‘JbS_‘&ISt':I‘I‘Hd;'I'E-SB.

The cruise controller takes as input the sen| s the trottle
value based on the difference between the {2t speeds. It
consists of the Pl Controller subsystem thal - T -{tie value. The
Pl Controller is enabled only when the CruiScworerereracver Open test hamess V8.
See Also

sltest.harness.import

2-54

Synchronize Changes Between Test Harness and Model

Synchronize Changes Between Test Harness and Model

In this section...

“Set Synchronization for a New Test Harness” on page 2-55

“Change Synchronization of an Existing Test Harness” on page 2-56
“Synchronize Configuration Set and Model Workspace Data” on page 2-56
“Check for Unsynchronized Component Differences” on page 2-57
“Rebuild a Test Harness” on page 2-57

“Push Changes from Test Harness to Model” on page 2-58

“Check Component and Push Parameter to Main Model” on page 2-58

A test harness provides an isolated environment to test design changes. You can
synchronize changes from the test harness to the main model, or from the main model to
the test harness. Synchronization includes these model elements:

* The component under test
* Block parameters

* Optionally, the model or test harness configuration set.
* Optionally, the model workspace parameters

You do not need to synchronize base workspace data because it is available to both test
harness and main model.

Set Synchronization for a New Test Harness

When creating a test harness, you specify when changes in the test harness are
synchronized with the main model. Synchronization can occur automatically or manually.
If you plan to try out different component designs in the test harness, use manual
synchronization to avoid overwriting the component in the main model. Depending on the
type of component under test in your harness, you can select from several
synchronization options, which are combinations of the following actions:

* On harness open — The component in the test harness is updated when the harness
opens. Synchronizing on harness open is useful if you update the design in the main
model.

* On harness close — The component in the main model is updated when the harness
closes. Synchronizing on harness close is useful if you make design changes in the test

2-55

2 Test Harness

2-56

harness. Avoid synchronizing on harness close if you want to prevent inadvertent
changes to the component in the main model.

* During push — Synchronization occurs manually, by selecting Analysis > Test
Harness > Push Component and Parameters to Main Model.

* During rebuild — Synchronization occurs manually, by selecting Analysis > Test
Harness > Rebuild Harness from Main Model.

Programmatically, set the SynchronizationMode property with
sltest.harness.create.

Note If you create a test harness in SIL or PIL mode for a Model block, the block mode in
the test harness is changed to SIL or PIL, respectively. This mode is not updated to the
main model when you close the test harness.

Maintain SIL or PIL Block Fidelity If you use a software-in-the-loop (SIL) or processor-
in-the-loop (PIL) block in the test harness, consider setting the test harness to rebuild
every time it opens. Regularly rebuilding the test harness ensures that the generated
code referenced by the SIL/PIL block reflects the main model.

Change Synchronization of an Existing Test Harness

To change a test harness synchronization mode:

Close the test harness.
In the main model, click the harness badge on the block or the Simulink canvas.

In the test harness thumbnail preview, click the Harness operations icon and select
Properties.

4 Change the Synchronization Mode in the properties dialog box.

Programmatically, set the SynchronizationMode property with sltest.harness.set.

Synchronize Configuration Set and Model Workspace Data

To synchronize the configuration set and workspace parameters between the test harness
and main model, select Update Configuration Parameters and Model Workspace
data on rebuild in the harness creation or harness properties dialog box.

Synchronize Changes Between Test Harness and Model

Check for Unsynchronized Component Differences

If your test harness does not synchronize changes, you can check for unsynchronized
component differences between the test harness and main model. Checking for
unsynchronized differences can be useful if:

* You are making tentative design changes in the test harness and want to check that
the main model component is not overwritten.

* You have made design changes to the main model and want to check which test
harnesses must be rebuilt.

From the test harness window, select Analysis > Test Harness > Check to check for
differences. If the component differs, you can push changes from the test harness to the
main model, or rebuild the test harness from the main model. Also see the
sltest.harness. check function.

Consider these conditions when checking for unsynchronized differences:

* sltest.harness.check only includes the block diagram, block parameters, and
mask parameters in the comparison between the test harness and main model. Port
options, compiled attributes, hidden parameters, and model reference data logging
parameters are not included in the comparison.

» If the component contains a Simscape™ Solver Configuration block, the check result
always shows that the component differs between the test harness and main model.
The Solver Configuration block is affected by Simscape blocks outside the component,
and therefore always differs between the test harness and main model.

Rebuild a Test Harness

Rebuild a test harness to reflect the latest state of the main model. In the test harness,
select Analysis > Test Harness > Rebuild Harness from Main Model. In addition to
updating the component under test and block parameters, this operation rebuilds harness
conversion subsystems. If the test harness does not have conversion subsystems,
rebuilding adds them.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main
model, signal lines in the test harness can be disconnected. If lines are disconnected,
reconnect signal lines to the component under test or conversion subsystems.

For more information, see “Select Test Harness Properties” on page 2-14 and
sltest.harness.rebuild.

2-57

2 Test Harness

Push Changes from Test Harness to Model
After changing your system in the test harness, you can push changes to the main model.

In the test harness, select Analysis > Test Harness > Push Component and
Parameters to Main Model. This process overwrites the component in the main model.

Check Component and Push Parameter to Main Model

This example shows a basic workflow of updating a parameter in a test harness, checking
the synchronization between the test harness and main model, and pushing the
parameter change from the test harness to the main model.

This example also includes programmatic steps.

Open the model sltestCar. The model includes a transmission shift controller algorithm
and simplified powertrain and vehicle dynamics.

open_system('sltestCar');

Simulink® Test™ model sltestCar

brake

impaller torque

(T
Ne
| throttle
Inputs Engine
FPassing Maneuver
Brake > Ne xR BE.w [|
U I 1
-
— ear
| = N _
. -
—l— Theottie throtile " > i Iﬁ iTout >
| Mout output torque
shift_logic transmission “ehick
transmission spesd

2-58

vehicle speed

Caopyright 1997-2017 The MathWaorks, Inc.

Synchronize Changes Between Test Harness and Model

Update the Mask Parameter in the Test Harness

1. Open the test harness. Click the badge on the shift logic chart and select the
ShiftLogic InportHarness test harness. The test harness is set to synchronize only
when you push to or rebuild from the main model.

sltest.harness.open('sltestCar/shift logic', 'ShiftLogic InportHarness');

¥

vehicle spead

k4

Sle

h J

Signal spec. shift_logic Signal spec.
and routing and routing

2. Double-click the shift logic subsystem. For Delay before gear change (tick),
enter 4. Click OK.

shiftLogicMask = Simulink.Mask.get('ShiftLogic InportHarness/shift logic');
maskParamValue = shiftLogicMask.Parameters.Value;
shiftLogicMask.Parameters.Value = '4"'; % Set the new parameter value
Check Synchronization between Test Harness and Main Model

On the command line, run the sltest.harness. check function.

[comparison,details] = sltest.harness.check('sltestCar/shift logic',...
'ShiftLogic_InportHarness');

The results show that the component under test is different in the test harness due to the
updated mask parameter.

comparison

comparison =
logical

0

2-59

2 Test Harness

details

details =
struct with fields:
overall: 0

contents: 1
reason: 'The contents of harnessed component and the contents of the component ii

Update the Parameter to the Main Model

1. In the test harness, select Analysis > Test Harness > Push Component and
Parameters to Main Model.

2. In the main model, double-click the shift logic subsystem. The parameter value is
updated.

sltest.harness.push('sltestCar/shift logic', 'ShiftLogic InportHarness')

Re-check Synchronization between Test Harness and Main Model

On the command line, update the main model and test harness. Then, run the
sltest.harness. check function.

set param('sltestCar', 'SimulationCommand’, 'update');
set param('ShiftLogic_InportHarness', 'SimulationCommand', 'update');

[comparison,details] = sltest.harness.check('sltestCar/shift logic',...
'ShiftLogic InportHarness');

The results show that the component under test is the same between the test harness and
the main model.

comparison

comparison =
logical

1

2-60

See Also

details

details =
struct with fields:
overall: 1

contents: 1
reason: 'The checksum of the harnessed component and the component in the main m

close system('sltestCar',0);

See Also

sltest.harness.check | sltest.harness.push|sltest.harness.rebuild

Related Examples
. “SIL Verification for a Subsystem” on page 4-2

2-61

2 Test Harness

Test Library Blocks

2-62

In this section...

“Library Testing Workflow” on page 2-62
“Library and Linked Subsystem Test Harness” on page 2-63

“Edit Library Block from a Test Harness” on page 2-64

You can use a library subsystem to help facilitate component reuse. Design and test
workflows can require testing of a reusable component source and each instance of the
component. For libraries, you can set up tests for the library subsystem during your
design. Once the library subsystem meets your requirements, you can create linked
blocks in larger models and test the subsystem instances.

Library Testing Workflow

Library testing broadly divides between testing the source library subsystem, and testing
each instance of the library subsystem. Testing the library subsystem checks the design in
isolation, while testing each instance checks the component in the context of the larger
system. Test harnesses can move from the source to the instance and the instance to the
source.

This procedure outlines an example workflow for testing library subsystems and linked
subsystems.

1 Create a test case and a test harness for the library subsystem. Use this test case to
perform requirements-based tests.

2 Test the library subsystem. If it fails your requirements, edit the model and run the
test case again.

Lock the library after the subsystem meets the requirements.
In your model, create a linked subsystem and retain the library test harnesses.

Compare the output of the linked instance to that of the library block using an
equivalence test case.

Create additional test cases and test harnesses for the linked instance.

Promote a test harness from the linked subsystem to the library if you want to include
the test harness with future linked subsystems.

Test Library Blocks

Library and Linked Subsystem Test Harness

A test harness for a library subsystem has specific properties, compared to test harnesses
for a subsystem in a model.

* Libraries do not compile, so a test harness for a library subsystem does not contain
compiled attributes.

» A test harness for a library subsystem does not generate conversion subsystems for
the block inputs and outputs.

* A library subsystem test harness does not use push or rebuild operations, because
libraries do not use configuration parameters.

When you create a linked subsystem from a library subsystem, test harnesses copy to the
linked instance. If you do not need the test harnesses, you can delete them. For
instructions on deleting all test harnesses from a model, see “Manage Test Harnesses” on
page 2-30.

When you create a test harness for a linked subsystem, the harness associates with the
linked subsystem, not the library subsystem. You can move a test harness from a linked
subsystem to the library subsystem. This linked subsystem has three test harnesses. To
move the Requirements Testsl1 test harness,

1 On the linked subsystem, click the harness badge.

Click the Harness Operations %* icon on the test harness you want to promote.

2-63

2 Test Harness

.—" Tset — | control_in
In1
control_out Troom
Troom_in Toutside
5_? 3 In2
Requi p TST"“_I"nnimllnr O ant
Lvirements_Tests
q - shtestHea. Harness1 sltestHea. Harness2
&

| Harness cupe.raﬁcuns |

Test Harnesses

3 Select Move to Library.

A dialog box informs you that moving the harness removes it from the linked
subsystem.

5 After confirmation, the harness appears on the library subsystem.

Edit Library Block from a Test Harness

You can apply an iterative design and test workflow to libraries by testing a library block
in a test harness and updating the component under test. Changes to the component
under test synchronize to the library when you close the test harness.

If you have a library block whose design is complete, set your test harnesses to prevent
changes to the component under test. You can set this property when you create the test
harness or after harness creation. See “Select Test Harness Properties” on page 2-14.

2-64

See Also

See Also

Related Examples
. “Testing a Library and a Linked Block”

2-65

Test Sequences and Verifications

* “Test Sequence Basics” on page 3-2

* “Assessment Basics” on page 3-8

* “Best Practices for verify Statements” on page 3-13

* “Organize Test Sequences” on page 3-19

» “Test Sequence Editor” on page 3-22

» “Test Step Actions and Transitions” on page 3-28

» “Signal Generation Functions” on page 3-37

* “Run-Time Assessments” on page 3-45

* “Programmatically Create a Test Sequence” on page 3-52

* “Syntax for Test Sequences and Assessments” on page 3-57

» “Debug a Test Sequence” on page 3-66

* “Test a Model Component Using Signal Functions” on page 3-69

* “Test Downshift Points of a Transmission Controller” on page 3-72
* “Test Assessment Reuse” on page 3-79

* “View Graphical Results From Model Verification Library” on page 3-84

3 Test Sequences and Verifications

Test Sequence Basics

3-2

In this section...

“Structure of a Test Sequence” on page 3-2
“Test Sequence Hierarchy” on page 3-2
“Step Transitions” on page 3-3

“Create a Basic Test Sequence” on page 3-3

You can use the Test Sequence block to specify test steps, actions, and transitions. With
timeseries inputs, you supply time-defined test vectors. However, the test sequences you
create can react to signal and temporal conditions. You can also use them to assess
simulation.

Structure of a Test Sequence

A test sequence consists of test steps arranged in a hierarchy. You can use transitions to
define the test sequence progression within a hierarchy level.

A test step contains actions and transitions you define using MATLAB as the action
language. Actions execute at the beginning of the step. You use actions to define
commands for each test step, such as setting signal levels, verifying logical conditions, or
setting variables. You use test step transitions to define conditions that determine when
the test sequence exits the current step and enters another step.

A standard transition occurs on a condition that you specify. Once the step exits, the next
step that you specify executes.

Test Sequence Hierarchy

Arrange the test sequence hierarchy using parent steps and substeps. Substeps can
activate only if the parent step is active. A group of steps in the same hierarchy level
shares a common transition type. When you create a test step, the step becomes a
transition option for other steps in the same group.

Test Sequence Basics

Step Transitions

In a test sequence, the top hierarchy level uses a standard transition. Test sequence
execution begins with the top step in the group, and proceeds according to the transition
conditions and next steps.

You can change lower-level groups to switch between steps based on signal conditions
defined in the step. This switching condition is called a When decomposition. In this case,
the parent step evaluates, and then the substeps execute based on their associated
conditions. The conditions determine the order in which the substeps execute. For
example, the first substep in the table does not necessarily execute first. If multiple steps
in a When decomposition group have conditions that are true, the highest step with the
true condition is active.

Create a Basic Test Sequence

In this example, you create a simple test sequence for a transmission shift logic controller.
1 Open the model. At the command line, enter

sltestTestSequenceExample

2 Right-click the shift controller subsystem and select Test Harness > Create
for ‘shift_controller’.

3 In the Create Test Harness dialog box, under Sources and Sinks, change Inport to
Test Sequence.

The schematic displays the closed-loop configuration between the Test Sequence
block and the component under test.

3-3

3 Test Sequences and Verifications

3-4

Properties | Description

Baszic Properties

Mame: slhestTestSequenceExample_Harnessl

Harnessas saved itarnady. Maore information

Sources and Sinks

[Test Sequence '] : [Component under Test

[T #dd separate assessment blaock

Harness Objectives

Initial harness configuration: |Refinement/Debugging -

Create without compiling the model
Febuild harness on open
Update Configuration Parameters and Model Workspace data on rebuild

Enable component editing in harness model

Cpen harness after creation

Click OK. The test harness for the shift controller subsystem opens. Double-
click the Test Sequence block.

The Test Sequence Editor opens and displays action and transition tips. Click the X to
close the tips. The first line in a Step cell defines the step name.

Create the test sequence.
a Rename the first step Accelerate and add the step actions:

speed = 10*ramp(et);
throttle = 100;

b Add a second step Stop and add the step actions:

Test Sequence Basics

throttle = 0;
speed = 0;

Right-click Accelerate and select Add sub-step. Create a total of four
substeps for Accelerate.

These steps check the component under test during the test sequence.

Add a constant to the block. In the Symbols pane, hover over Constant and
click Add. Enter Limit for the constant name.

Hover over Limit and click Edit. In the Initial value field, enter 2. Click OK.

In the Transition column, enter the transition condition for Accelerate. This
condition uses the duration operator and transitions to the next step when the
system is in fourth gear for 2 seconds.

duration(gear == 4) >= Limit

In the Next Step column, select Stop.

Change the Accelerate group to a When decomposition sequence. Right-click
Accelerate and select When decomposition.

Enter the names and actions for the substeps.

Checklst when gear == 1
verify(speed < 45)

Check2nd when gear == 2
verify(speed < 75)

Check3rd when gear == 3
verify(speed < 105)

Else

The fourth step Else takes no action. Else handles conditions that make no
other when statement valid.

3 st Sequences and Verifications

symbols Step Transition Next Step
Input -
I BN Accelerate 1. duration{gear == 4) == Lirnit Stop v
1. [gear speed = 10%ramp(et);
throttle = 100;
e
Checklstwhen gear ==
O [et verityispeed < 49)
2. [throttle
Local Check2nd when gear ==
verify(speed < 75)
Constant
Lirniit Checkard when gear ==

verifyispeed < 105)
Parameter

Data Store Memaory Else
Stop
throttle = 0;
speed = 0;

6 Add a scope to the harness and connect the speed, throttle, and gear signals to

the scope.
Scope
1 spesd ﬂ
D—bia&r = > = -T-
gear
3 ottle) H
Ik
h A

Test Sequence s hift_controller

7 Set the model simulation time to 15 seconds and simulate the test harness.

3-6

See Also

fourth
third

second

first

Mone

See Also

“Test Sequence Editor” on page 3-22 | “Syntax for Test Sequences and Assessments” on
page 3-57 | Test Sequence

Related Examples

. “Programmatically Create a Test Sequence” on page 3-52

3 Test Sequences and Verifications

Assessment Basics

3-8

In this section...

“Overview” on page 3-8
“Comparing Simulation to Baseline Data or Another Simulation” on page 3-9
“Post-Processing Simulation Output” on page 3-9

“Run-Time Assessments” on page 3-10

Overview

Functional testing requires assessing simulation behavior and comparing simulation
output to expected output. Assessments are used, for example, to:

* Compare a final signal value to a constant.

» Compare timeseries data to a baseline.

* Find peaks in timeseries data, and compare the peaks to a pattern.

* Analyze signal behavior in a time interval after an event.

This topic provides an overview of assessments, so that you can set up tests for your
particular application. In the topic, you can find links to more detailed examples of each
assessment.

You can include assessments in a test case, a model, or a test harness.
* In the test case, you can:

* Compare simulation output to baseline data.
* Compare the output of two simulations.
* Post-process simulation output using a custom script.
* In a test harness or model, you can:
¢ Perform run-time assessments, which return a pass, fail, or untested result for
each time step.

+ Use run-time assertions to stop simulation on a failure.

Assessment Basics

Comparing Simulation to Baseline Data or Another Simulation

Baseline criteria compares simulation data to baseline data, according to tolerances.
Equivalence criteria compares data from two simulations, according to tolerances. You
can set baselines for numeric, enumerated, or logical data.

Set a numeric range for the comparison using absolute or relative tolerances. Set a time
range for the comparison using leading and lagging tolerances. For numeric data, you can
specify a comparison range using absolute tolerance, relative tolerance, leading
tolerance, or lagging tolerance. For enumerated or logical data, you can specify a
comparison range using leading or lagging tolerance. Results outside the tolerance range
fail. For more information, see “Apply Tolerances to Test Criteria” on page 6-70.

Specify the baseline data and tolerances in the Test Manager Baseline Criteria or
Equivalence Criteria section. Results appear in the Results and Artifacts pane. The
comparison plot displays the data and differences.

This graphic shows an example of baseline criteria. The baseline criteria sets a relative
tolerance for signals output torque and vehicle speed.

BrakeThrottleBaseline3.mat
output torque 0 0.10% 0]
vehicle speed 0 0.10% 0]

Post-Processing Simulation Output

You can analyze simulation data using specialized functions by using a custom criteria
script. For example, you could find peaks in timeseries data using Curve Fitting Toolbox™
functions. A custom criteria script is MATLAB code that runs after the simulation.
Assessments in the code are qualifications from the MATLAB Unit Test framework.

Write a custom criteria script in the Test Manager Custom Criteria section of the test
case. Custom criteria results appear in the Results and Artifacts pane. Results are

shown for individual MATLAB Unit Test qualifications. For more information, see “Apply
Custom Criteria to Test Cases” on page 6-93.

This simple test case custom criteria verifies that the value of slope is greater than 0.

3-9

3 Test Sequences and Verifications

3-10

% A simple custom criteria
test.verifyGreaterThan(slope,0, 'slope must be greater than 0')

Run-Time Assessments
verify Statements

For general run-time assessments, use verify statements. A verify statement
evaluates a logical expression and returns a pass, fail, or untested result for each
simulation time step. verify statements can include temporal and conditional syntax. A
failure does not stop simulation.

Enter verify statements in a Test Assessment or Test Sequence block, using the Test
Sequence Editor. You can use verify statements with or without a test case in the Test
Manager. Without a test case, results appear in the Simulation Data Inspector. With a test
case, results appear in the Test Manager.

For information on using verify statements in your model, see “Best Practices for verify
Statements” on page 3-13. For information on verify statement syntax, see “Run-Time
Assessments” on page 3-45.

assert Statements

Similar to verify statements, you can use assert statements in a Test Assessment or
Test Sequence block. assert statements stop simulation, so consider assert statements
for conditions that could render a test invalid. Failures are shown in the Diagnostic
Viewer. assert statement results do not appear in the Test Manager results or the
Simulation Data Inspector. For more information, see “Best Practices for verify
Statements” on page 3-13 and “Run-Time Assessments” on page 3-45.

Run-Time Assessments in Real-Time Tests

If you are using a real-time test case, or if you want to reuse a desktop simulation test
case on a real-time target, use verify statements instead of assert statements. assert
statements are not supported for real-time testing.

Model Verification Library Blocks

Use blocks from the Model Verification library to assess signals in your model or test
harness. For example, you can check that a signal stays between two dynamic bounds, or
check that each data point in a signal stays outside of a fixed range. You can view pass,

See Also

fail, or untested results in the Simulation Data Inspector. For more information, see
“View Graphical Results From Model Verification Library” on page 3-84.

Examples
For example, this test harness includes:

* Averify statement in the Test Assessment block, verifying that signalC >= 5.
* An Assertion block verifying that the signal throttle >= 0.

I il
- brake
1 1
- g Rk gear vehickeSpesd | —
Signal spec. —>{leite ard rouing

i) & and routing

Test Sequence block Component under test
1 Test Assessment block
- > 2 containing veri £y statements,

rerify(signalC == 5)
- 3 egverify(signalc =
=0 > @ Assertion block
See Also

Related Examples
. “Test Model Output Against a Baseline” on page 6-9

3-11

3 Test Sequences and Verifications

. “Test Two Simulations for Equivalence”
. “Run-Time Assessments” on page 3-45

3-12

Best Practices for verify Statements

Best Practices for verify Statements

This topic describes some best practices for assessing simulation with verify
statements. These practices also apply to assert statements. When you use verify or
assert statements in your model, you must define

1 When each statement is active, and
2 The condition that each statement verifies.

It is important that a verify statement is active at the intended simulation time, and that
signals assessed by the verify statement are not delayed. Follow these guidelines:

1 Author verify statements in a separate Test Assessment block. You can create a
Test Assessment block during harness creation, or add it from the Simulink Test block
library.

2 In the Test Assessment block, use a When decomposition sequence to contain verify
statements. For more information, see “Test Step Transitions” on page 3-25.

3 Ifyour model uses a Test Sequence block source, activate each verify statement
using the Test Sequence active step output.

4 If your model uses another type of source, use signal conditions to activate each
verify statement.

The following sections describe how to use active test step data, When decompositions,
and conditional statements.

Activating verify Statements with Active Test Step Data

If your model or test harness uses a Test Sequence block source, link the Test Sequence
block to a Test Assessment block with the active test step data. Activate each verify
statement in the Test Assessment block based on which Test Sequence block step is
active. This creates a clear and well defined relationship between the step in your test
sequence, and the verification of the model condition in that step.

This test harness shows the Test Sequence and Test Assessment block connected by the
Active Step signal.

3-13

3 Test Sequences and Verifications

[RedButtonOUT_S]
[GraenBultonOUT_5]

Test Sequence

Active_Step

RedButtoniM ReedButtonOUT

GreenButtonOUT

Signal spec.

and routing

GreenButton|M

RejectPrassingBothButtons

RedButtoniM_A

GreanButtanIM_A

RedButtonOUT_A

reenButtonOUT_A

i

[RedButtonOUT_S]
raenButionUT_5]

=

Signal spac
and rauting

=y

Tast Assessment Block

In this example, the Test Assessment block contains verify statements in a When
decomposition sequence. Each verify statement corresponds to a Test Sequence block
step. So, for example, when the test sequence is in the step PressBothButtons, the step

VerifyBoth is active. VerifyBoth contains this assessment:

verify(RedButtonOUT == false && GreenButtonOQUT == false)

This graphic shows the Test Sequence block and Test Assessment block contents.

Symbols Step
1 PressNeitherButton
1. (&) RedButtonoUT
RedButtonlN = false
2. ButtonOUT N

reenuten GreenButtonN = false;
output
i+ B Ry PressBothButtons
2.) GreenButtoniN RedButtonlN = true;
2.5 TsActvestepoUT GreenButtonN = true;
- PressRedButton
Constant

RedButtonlN = true;

Parameter GreenButtonIN = false;

Data Store Memory
PressGreenButton

RedButtonIN = false;
GreenButtonlN = true;

EndTest

Test Sequence block

Transition

1 after(1,56c)

1 after(1,sec)

1 after(1,sec)

1 after(1,sec)

Next Step
PressBothButtons

PressRedButton

PressGreenButton

EndTest

Symbols Step

Input -

v ® B Assessments
+ () RedButonin

2 () GreenButtonIN

Transition Next Step

3.[-) RedButtonoUT when T pIN ==T:

BTl verify(RedButtonOUT == false &&.

5. TSActiveStepIN GreenButtonOUT == false)

Output VerifyBoth when T =

v - Verify(RedButtonOUT == false 8&
Constant GreenButtonOUT == false)

Parameter

VerifyRed when ==
Data Store Memory
v verify(RedButtonOUT == true &&
GreenButtonOUT == false)

when T =T

verify(RedButtonOUT == false &8
GreenButtonOUT == true)

Else

Test Assessment block

To connect a Test Sequence and Test Assessment block with active step data:

1 Create active step data output for the Test Sequence block:

3-14

Best Practices for verify Statements

Select the Test Sequence block in the block diagram.

Create a new enumerated data output. In the Property Inspector, select Create
data to monitor the active step.

Name the enumeration.

Property Inspector [4

Test Seguence
Properties Info
Update method | Inherited hd

Sample Time

Create data to monitor the active step

Ernurm name: | TSActiveStepEnum |

Create a data input for the Test Assessment block:

a
b

Open the Test Assessment block.
In the Symbols sidebar, next to Input, click the Add data icon. Name the input.

In the block diagram, connect the Test Sequence block output to the Test Assessment
block input.

Create a When decomposition sequence in the Test Assessment block.

C

The Test Assessment block contains a default When decomposition sequence. To
change from a standard sequence to a When decomposition sequence, right-click
the parent step and select When decomposition.

For each substep in the When decompositon sequence, enter a statement that
defines when the step is active. Use the active step enumeration data in the when
statement. For example, the VerifyBoth Test Assessment step is active when
the active Test Sequence step is PressBothButtons:

VerifyBoth when TSActiveStepIN == TSActiveStepEnum.PressBothButtons
Add verify statements to each assessment step.

This graphic shows the complete When decomposition sequence in the Test
Assessment block:

3-15

3 Test Sequences and Verifications

Step

Transition Next Step

B Assessments

VerifyNeither when TSActiveStepIN == TSActiveStepEnum.PressNeitherButton

verify(RedButtonOUT == false &&...
GreenButtonOUT == false)

VerifyBoth when TSActiveSteplN == TSActiveStepEnum.PressBothButtons

verify(RedButtonOQUT == false &&...
GreenButtonOQUT == false)

VerifyRed when TSActiveSteplN == TSActiveStepEnum.PressRedButton

verify(RedButtonQUT == frue &é&...
GreenButtonQUT == false)

VerifyGreen when TSActiveSteplN == TSActiveStepEnum.PressGreenButton

verify(RedButtonQUT == false &&...
GreenButtonQUT == true)

Else

5 You can view the step activity when you run the model. This graphic shows the
animation in both blocks. For more information, see “Debug a Test Sequence” on
page 3-66.

D Step Transition Next Step BT Step Transition
e PressNeitherButton sfafter(1sec) | [PressBothButtons v| = B [Assessments
1. RedButioroUT —_— 1. RedButonin
2 (5] GreenButtonOUT RedButtonlN = false 2 (&) GreenButtonlN
GreenButtonIN = false; B VerifyNeither when TSActiveStepIN == TSActiveStepEnum.PressNeitherBution
outpat &) RedButtonouT
utpu
1. RedButonin PressBothButions 1 after(1.sec) PressRedBution v 4. () GreenguttonouT verify(RedButtonOUT == false &
5 () TsactvestepiN GreenButtonOUT == false
2 (&) Greensutionin RedButtonlN = true: - TeAcesten
3. (1) TSAciveSiepOUT (GreenButionIN = true Output NerifyBoth when TSAGt = TSActveStopEnum: fron
Local
C=d PressRedButton + after(1,sec) PressGreenButton v rify(RedButtonOUT == false 8&.
Constant Constant GreenButtonOUT == false
RedButtonlN = true. et
e = arameter
Parameter Ceziivali=Em VerifyRed when TSActiveStepIN == TSActiveStepEnum.PressRedBution
Data Store Memory Data Store Memory
PressGreenButton 1. after(1,sec) EndTest v verify(RedButtonOUT == true &&
GreenButtonOUT == false
RedButtonlN = false:
GreenButtoriN = true; VerifyGreen when TSAciiveStepIN == TSActiveStepEnum.PressGreenBution
EndTest verify(RedButtonOUT == false &&.
GreenButtonOUT == true)
Else
Test Sequence block Test Assessment block

3-16

Next Step

Best Practices for verify Statements

Verify Using Signal Conditions

If your model does not use a Test Sequence block source, or if you cannot map Test
Sequence block steps directly to Test Assessment block steps, use unique signal
conditions to activate verify statements. Use a separate Test Assessment block, and
place verify statements in a When decomposition sequence. In the when conditions, use
unique combinations of signals or other data from the model. For example, this test
harness uses a Signal Builder block input.

Group 1
RedButtonlMN

o~
L

GreenButtonlN

"

Hamess Inputs

RedButtonlM RedButtonOUT

GreenButtoniN ~ GreenButtonOUT

RejectPressingBothButtons

RedButtonlM
GreenButtonlM

RedButtonOUT

i

—
RedButtonOUT
P e 2)
GreenButtonOUT

1
2
3

GreenButtonOUT

|

Y

Test Assessment Block

The Test Assessment block contains a When decomposition sequence. Each of the
substeps contains a verify statement. A unique signal condition activates each substep.
For example, when RedButtonIN == true && GreenButtonIN == true,
VerifyBoth is active in the Test Assessment block. VerifyBoth contains this statement:

verify(RedButtonOUT == false && GreenButtonOUT == false)

This graphic shows the Signal Builder and Test Assessment block contents.

3-17

3 Test Sequences and Verifications

Active Group: | |group 1 v [GF [=] (=
11 RedButioniN
0.5
0
11 GreenButtonIN
0.5
0 i L L L L i i I}
0 05 1 15 25 a5 4 45 5
Time (sec)

3-18

See Also

= GreenBution

Symbols
Input
1. [2) RedButtoniN
2 [GreenButtonIN
3. [J RedButtonOUT
4. [) GreenButtonoUT
Output
Local
Constant
Parameter

Data Store Memory

Transition

B Assessments

fyNeil when RedBi IN == false && N == false

verify(RedButtonOUT == false &&.
GreenButtonOUT == false)

VerifyBoth when RedButtonIN == frue && GreenButtonIN == true

verify(RedButtonOUT == false &&...
GreenButtonOUT == false)

VerityRed when RedButtonIN == true && GreenButtonIN == false
verify(RedButtonOUT == true && GreenButtonOUT == false)

VerifyGreen when RedButtonIN == false && GreenButtonIN == true
verify(RedButtonOUT == false && GreenButtonOUT == true)

Else

“Test Sequence Editor” on page 3-22 | Test Sequence | Test Assessment

Next Step

Organize Test Sequences

Organize Test Sequences

Compared to using timeseries data, using the Test Sequence block to define your test
inputs has these advantages:

* You can organize test scenarios in test step groups, and use hierarchy levels to isolate
test scenario execution.

* You can isolate model functionality by separating signal commands into distinct test
steps.

* Steps can execute in response to the model, using logical conditions.
* You can author assessments for specific test conditions.

* You can concisely express signal patterns, such as waveforms, using output
commands.

Before creating test steps, consider the test sequence organization. Clear organization
helps communicate the test sequence intent and structure.

Consider the case of verifying a simple subsystem. The subsystem consists of a switch
controlled by the Engage signal.

h 4

G

Imput 1

22

Engage

GO

Imput 2

¥
T

1l

=]

¥

¥

TK switch

The goal of the test is to complete a simple verification of the switch function. The test
does not cover all objectives for full verification, but covers a simple design check. Check
that the output equals Input 1 when the control is engaged, and Input 2 when the
control is not engaged. You organize a test sequence into an initialization step and two
test scenarios. Each scenario sets Input 1and Input 2, then sets Engage, then
assesses the switch output:

3-19

3 Test Sequences and Verifications

Initialize the signals
Scenario 1

a Set the signal levels
b Engage the control
¢ Assess the result

3 Scenario 2

a Set the signal levels
b Engage the control
¢ Assess the result

In the test sequence editor, the step hierarchy follows the hierarchy of the scenario
outline:

3-20

Organize Test Sequences

Symbols
Input
1. 1) SwitchOutput
Dutput
1. 15 Input1
2 |2 Engage
3.) Input2
Local
EndTest
Constant
SignalHigh
SignalLow
Parameter

Data Store Memory

Step

Initialize Test
Input1 = 0;
Engage = 0;
Input2 = 0;
EndTest =0;

B OffOn_Test

SetSignals

Input1 = SignalLow;
Input2 = SignalHigh;
Engage = 0;

Engage OffOn
Engage = 1;

Assess OffOn
verify(SwitchOutput == Input1);

EndTest
EndTest = 1;

B OnOff_Test

SetSignals

Input1 = SignalLow;
Input2 = SignalHigh;
Engage = 1;

Engage OnOff
Engage = 0;

Assess_OnOff
verify(SwitchOutput == Input2);

EndTest

Transition

g8

Inputt == 0 &&...
Input2 == 0 &&...

Engage ==

. EndTest ==

. true

. true

. frue

. true

. frue

. true

Next Step
OffOn_Test

OnOff_Test

Engage OffOn

Assess_OffOn

EndTest

Engage_OnOff

Assess_OnOff

EndTest

Note To execute test steps sequentially without using a logical transition condition, use
the condition true. true moves the sequence to the next step after the current step.

3-21

3 Test Sequences and Verifications

Test Sequence Editor

3-22

Input, Output, and Data Management

Manage inputs, outputs, and data objects using the Symbols sidebar of the Test

Sequence Editor. Click the symbols sidebar button on the toolbar to show or hide the
sidebar. To add a symbol, hover over the symbol type and click Add. To edit or delete a
data symbol, hover over the data symbol and click Edit or Delete.

If you add a symbol to the test sequence block, you can access that symbol from test steps
at any hierarchy level. For information on using messages, see “Test Step Actions and
Transitions” on page 3-28.

Symhbaols
Inpunt

1. [gear
Output

1. 1 speed

2. L) throttle
Local
Constant
Parameter

Data Store Memory

Symbol Type Description Procedure for Adding

Input Inputs can be data or Click Add in the sidebar and
messages. enter the input name.

Output Outputs can be data, Click Add in the sidebar and
messages, or function calls. |enter the output name.

Test Sequence Editor

Symbol Type Description Procedure for Adding

Local Local data entries are Add a local variable in the
available inside the test sidebar and initialize the
sequence block in which local variable in the first test
they are defined. step.

Constant Constants are read-only Add a constant in the
data entries available inside |sidebar. Click Edit and
the test sequence block in |enter the constant value in
which they are defined. the dialog box, in the Initial

Value field.
Parameter Parameters are data Using the Model Explorer,

available inside and outside
the Test Sequence block.

add a parameter in the
workspace of the model
containing the Test
Sequence block. Then add
the parameter name to the
Parameter symbols.

Data Store Memory

Data Store Memory entries
are available inside and
outside the Test Sequence
block.

Using the Model Explorer,
add a Simulink.signal entry
in the workspace of the
model containing the Test
Sequence block.
Alternatively, add a Data
Store Memory block to the
model. Then add the data
store memory name to the
Data Store Memory
symbols.

Add and Delete Test Steps

To add a test step, right-click a step. Select Add step before or Add step after. Select
Add sub-step to create a test step in a lower hierarchy level.

To delete a test step, right-click the step. Select Delete step. If the sequence contains
only one test step, you cannot delete it. You can delete the contents by selecting Erase

last step content.

3-23

3 Test Sequences and Verifications

Copy Test Steps

You can cut or copy test steps, and paste them before or after another step. You can also
paste them in a hierarchy below another step. Right-click the test step and select Cut
step or Copy step. To paste, right-click another test step and select Paste step > Paste
before step or Paste step > Paste after step. To paste in a lower hierarchy, select
Paste step > Paste sub-step.

You can also use Ctrl+X, Ctrl+C, and Ctrl+V shortcuts.

Reorder Test Steps and Transitions

You can reorder test steps from the editor. Hover over the icon to the left of the step
name. Click and drag the icon to reorder the test step. Test steps can be reordered within
the same hierarchy level. Substeps are also moved with the test step.

Step

nitialize

%% Initialize data outputs
Stickinputin = 0;
alpharad = 0;

qgradsec = 0;

B: Setup

Drag to reorder k
step i o
o o

You can reorder step transitions within the same test step. Hover over the transition
number. Click and drag the number to reorder the transition. The corresponding next step
is maintained.

Transition Next Step
1 Speed > S0 o BrakeTest

Drag to reorder UmitTest
transition

Change Test Step Hierarchy
Change test step hierarchy level by indenting or outdenting the test step. Right-click the

test step, and select Indent step to move it to a lower level, or Outdent step to move it
to a higher level.

3-24

Test Sequence Editor

Moving to a lower hierarchy level (indenting) requires a preceding step at the same
hierarchy level. You cannot indent the first test step in a sequence or the first step in a
hierarchy group.

Only the last step in a hierarchy group can be moved to a higher level.

Test Step Transitions

Standard Transition

In a standard transition, the default step is the first step listed in the sequence. The
sequence progresses according to the transition conditions and next steps. To create a
sequence using standard transitions:

Add new steps to the sequence.

Define outputs and assessments in the Step cell. For example, this code sets on_off
to false and verifies that the FanOn signal is true.

on off = false;
verify(FanOn == true);

For each step that requires a transition, hover over the Transition cell and click Add
transition. Define the step exit conditions in the transition. For example, this code
transitions to another step after the current step has been active for 20 seconds.

after(20,sec)
Select the next test step from the drop-down list in the Next Step cell.

3-25

3 Test Sequences and Verifications

Step Transition MNext Step

3-26

initialize 1. true Mormal on off W
on_off = false;
Tproj = single(0);

Normal_on_off

end_test = 0;
On 1. FanOn == frue Wait A
on_off = true;
Wait 1. after(20.sec) Off v
on_off = false;

verify(FanCn == true,._.
'Simulinkverify_scenariol’,. ..
'Fan should be active');

Off 1. FanOn == false End ¥
on_off = frue;

End
on_off = false;
end_test = 1;

When Decomposition Transition

In a When decomposition sequence, steps activate based on a signal condition that you
define on the same line as the test step name. Precede the signal condition with the when
operator. For example, a step named OverSpeed?2 activates when the signal gear is
equal to 2:

OverSpeed2 when gear ==

A When decomposition requires a parent step. To specify a When decomposition sequence,
right-click the parent step and select When decomposition. The parent step displays the

icon . Add substeps to define the when conditions.
At each time step, the when statements evaluate from top to bottom, and the first step

with a valid statement executes. The final step in a When decomposition handles
conditions which do not match another when condition in the sequence, similar to an

See Also

Else condition in an if-then-else construct. Therefore, the final step cannot include a
when statement, but the final step can include step actions.

Step Transition Next Step

E™C HighLevelAssessment
assert(speed >= 0);
assert(throttle == 0);

(
(
asseri(throttle <= 100);
assert(gear = 0);

OverSpeed3 when gear ==
verify(speed <= 90.'SLTest:Gear3_overspeed')

OverSpeed2 when gear == 2
verify(speed <= 50.'SLTest:Gear2_overspeed')

OverSpeed5 when gear == 3
verify(speed <= 30,'SLTest:Gear1_overspeed')

Else

See Also
Test Sequence | Test Assessment | “Syntax for Test Sequences and Assessments” on page
3-57

Related Examples
. “Programmatically Create a Test Sequence” on page 3-52

3-27

3 Test Sequences and Verifications

Test Step Actions and Transitions

In this section...

“Transition Between Steps Using Temporal or Signal Conditions” on page 3-28
“Temporal Operators” on page 3-29
“Transition Operators” on page 3-30

“Use Messages in Test Sequences” on page 3-31

Transition Between Steps Using Temporal or Signal Conditions

The Test Sequence block uses MATLAB as the action language. You can transition
between test steps by evaluating the component under test. You can use conditional logic,
temporal operators, and event operators.

Consider a simple test sequence that outputs a sine wave at three frequencies. The test
sequence transitions between steps:

* From Initialize to Sine when Switch changes

¢ From Sine to Sine8 when Switch changes from the value 1

* From Sine8 to Sinel6 when Switch changes to the value 13.344

Data Symbols Step Transition Next Step
Input -
_ Initialize 1. true Sine v
Switch Signalout = 0;
Output
- Sine i ;
g 10ut 1. hasChanged(Switch) Sines v
ansiu SignalOut = sin(et*2*pi/10);
Local
Sined i i
Constant 1. hasChangedFrom{Switch,1) Sinel6 v
SignalOut = sin(et*8*pii10);
Parameter
Data Store Memory Sine16 1. hasChangedTo(Switch,13.344) sigp v
SignalOut = sin(et™16*pif10);
Stop
SignalOut = 0;

3-28

Test Step Actions and Transitions

Temporal Operators

To create an expression that evaluates the simulation time, use temporal operators.
Variables used in signal conditions must be inputs, parameters, or constants in the Test
Sequence block.

Operato |Syntax Description Example
r
et et(TimeUnits) |The elapsed time of the |The elapsed time of the test
test step in TimeUnits. [sequence step in milliseconds:
Omitting TimeUnits
returns the value in et(msec)
seconds.
t t(TimeUnits) The elapsed time of the |The elapsed time of the
simulation in simulation in microseconds:
TimeUnits. Omitting
TimeUnits returns the |t(usec)
value in seconds.
after after(n, Returns true if n After 4 seconds:
TimeUnits) specified units of time
in TimeUnits elapse |2fter(4,sec)
since the beginning of
the current test step.
before |before(n, Returns true until n Before 4 seconds:
TimeUnits) specified units of time
in TimeUnits elapse, |Pefore(4,sec)
beginning with the
current test step.
duration |ElapsedTime = |Returns ElapsedTime |Return true if the time in
duration in TimeUnits for milliseconds since Phi > 1is
(Condition, which Condition has |greater than 550:
TimeUnits) been true.

ElapsedTime is reset
when the test step is re-
entered or when

Condition is no longer

true.

duration(Phi>1,msec) > 550

3-29

3 Test Sequences and Verifications

Syntax in the table uses these arguments:
TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs,
parameters, or constants, with at most one local or output data.

Examples:

u>20
X <= 1.56

Transition Operators

To create expressions that evaluate signal events, use transition operators. Common
transition operators include:

Operator Syntax Description Example

hasChanged hasChanged (u) Returns true if u Transition when h
changes in value changes:

since the beginning
of the test step,
otherwise returns
false.

hasChanged(h)

u must be an input
data symbol.

3-30

Test Step Actions and Transitions

Operator Syntax Description Example
hasChangedFrom |hasChangedFrom(u,A)|Returns true if u Transition when h
changes from the changes from 1:

value A, otherwise

returns false. hasChangedFrom(h,1

u must be an input
data symbol.

hasChangedTo hasChangedTo(u,B) |Returns trueifu Transition when h
changes to the value |changes to 0:
B, otherwise returns

false. hasChangedTo(h,0)

u must be an input
data symbol.

Use Messages in Test Sequences

Messages carry data between Test Sequence blocks and other blocks such as Stateflow®
charts. Messages can be used to model asynchronous events. A message is queued until
you evaluate it, which removes it from the queue. You can use messages and message
data inside a test sequence. The message remains valid until you forward it, or the time
step ends. For more information, see Messages in the Stateflow® documentation.

Receive Messages and Access Message Data

If your Test Sequence block has a message input, you can use queued messages in test
sequence actions or transitions. Use the receive command before accessing message
data or forwarding a message.

To create a message input, hover over Input in the Symbols sidebar, click the add
message icon, and enter the message name.

Symbols %
Input [& Input1 Add message

receive (M) determines whether a message is present in the input queue M, and removes
the message from the queue. receive (M) returns true if a message is in the queue, and

3-31

http://www.mathworks.com/help/stateflow/messages.html

3 Test Sequences and Verifications

3-32

false if not. Once the message is received, you can access the message data using the
dot notation, M. data, or forward the message. The message is valid until it is forwarded
or the current time step ends.

The order of message removal depends on the queue type. Set the queue type using the
message properties dialog box. In the Symbols sidebar, click the edit icon next to the
message input, and select the Queue type. For more information see Queuing Behavior
of Stateflow Messages.

Send Messages

To send a message, create a message output and use the send command. To create a
message output, hover over Output in the Symbols sidebar, click the add message icon,
and enter the message name.

X
OCutput EPE=y Rl)Lt put 1 Add message

You can assign data to the message using the dot notation M. data, where M is the
message output of the Test Sequence block. send (M) sends the message.

Forward Messages

You can forward a message from an input message queue to an output port. To forward a

message:

1 Receive the message from the input queue using receive.

2 Forward the message using the command forward(M,M out) where M is the
message input queue and M out is the message output.

Compare Test Sequences Using Data and Messages

This example demonstrates message inputs and outputs, sending, and receiving a
message. The model compares two pairs of test sequences. Each pair is comprised of a
sending and receiving test sequence block. The first pair sends and receives data, and the
second sends and receives a message.

Set the following path and model name variables.

filePath = fullfile(matlabroot, 'examples', 'simulinktest');
model = 'sltest testsequence data vs message';

http://www.mathworks.com/help/stateflow/ug/queuing-behavior-of-messages.html
http://www.mathworks.com/help/stateflow/ug/queuing-behavior-of-messages.html

Test Step Actions and Transitions

Open the model.
open_system(fullfile(filePath,model))

1 1
2 M | ZrActve
3 3
dataSiep

Y

DataSender DataHecsiver -
0O =
o =
messageStap
: V {1 :_Acv
3 2
MessageSender MessageReceiver
Test Sequences Using Data
The DataSender block assigns a value to a data output M.
Step Transition Next Step Description
step_1 .. s e e
‘M =3.5] - the data
step 2

The DataReceiver block waits 3 seconds, then transitions to step S2. Step S2 transitions
to step S3 using a condition comparing M to the expected value, and does the same for S3

to S4.

3-33

3 st Sequences and Verifications

Step Transition Next Step Description
51 ... o e - I o
52 .. L 3}]
== 1. M==35 s4 v
sS4

Test Sequences Using Messages

The MessageSender block assigns a value to the message data of a message output
M out, then sends the message to the MessageReceiver block.

Step Transition MNext Step Description
step 1 1 step 2 w Assigns avalue fo
M.data = 3.5; - the message's data
step 2 1 step 3 v Sendsihe message
send(M) B
step 3

The MessageReceiver block waits 3 seconds, then transitions to step S2. Step S2's
transition evaluates the queue M with receive (M), removing the message from the
queue. receive (M) returns true since the message is present. M.data == 3.5

compares the message data to the expected value. The statement is true, and the
sequence transitions to step S3.

3-34

Test Step Actions and Transitions

Step
1

52

53

54

Transition Next Step Description
1. after(3,5ec) g2 v Waits.
1. receive(M) && M.data == 3.5 53 ¥ Transitions to 53 if a message

i5 available in the gueue and
message data == 3.5.

1. receivelM) 54 L J Transitions to S4 if a message
i5 availakle in the queue.
(it is not, because it has been
received).

When step S3's transition condition evaluates, no messages are present in the queue.
Therefore, S3 does not transition to S4.

Run the test and observe the output comparing the different behaviors of the test
sequence pairs.

open_system([model '/Scope'l)
sim(model)

3-35

3 Test Sequences and Verifications

[o || =[] ER
File Tools View Simulation Help N
@- O P® | == Q- LC-F&-

datastep

Ready T=6.000

close system(model,0)
clear(model, filePath)

See Also

“Syntax for Test Sequences and Assessments” on page 3-57 | Test Sequence

Related Examples
. “Signal Generation Functions” on page 3-37
. “Run-Time Assessments” on page 3-45

3-36

Signal Generation Functions

Signal Generation Functions

In this section...

“Sinusoidal and Random Number Functions in Test Sequences” on page 3-37
“Using an External Function from a Test Sequence Block” on page 3-39

“Signal Generation Functions” on page 3-41

In the Test Sequence block, you can generate signals for testing.

1 Define an output data symbol in the Data Symbols pane.
2 Use the output name with a signal generation function in the test step action.

You can call external functions from the Test Sequence block. Define a function in a script
on the MATLAB path, and call the function in the test sequence.

Sinusoidal and Random Number Functions in Test Sequences

This example shows how to produce a sine and a random number test signal in a Test
Sequence block.

The step Sine outputs a sine wave with a period of 10 seconds, specified by the argument
et*2*pi/10. The step Random outputs a random number in the interval -0.5 to 0.5.

3-37

3 Test Sequences and Verifications

Symbols
Input
Output

1. 15 =g
Local

nr

Constant
Parameter

Data Store Memory

Step
Initialize
sg=0;

Sine
sg = sin(et*2"pi/10});

Stop
sg=0;

Random

coder.extrinsic{rand');

nr =rand;
sg=nr-0.5;

End
sg=0;

The test sequence produces signal sg.

3-38

Transition

1. tfrue

1. after{10,sec)

1. true

1. after{10,sec)

Next Step
Sine v

Stop v

Random w

End L J

Signal Generation Functions

4 = [=] 3

File Tools View Simulation Help u

- 4P| - A& FH-

Ready T=13.000

Using an External Function from a Test Sequence Block

This example shows how to call an externally-defined function from the Test Sequence
block. Define a function in a script on the MATLAB® path, and call the function from the

test sequence.

In this example, the step ReducedSine reduces the signal sg using the function
Attenuate.

3-39

3 Test Sequences and Verifications

Symbols Step Transition Next Step
Input Initialize 1. true ReducedSine ¥
Output sg=0;
1. %) =g
ReducedSine 1. after(10,sec Sto v
2 &l 2= sg = sin(et*2*pi/10); (} P
Local asg = Aftenuate(sg);
Constant
Parameter Stop
sg=0;

Data Store Memory

The test sequence produces signal sg and attenuated signal asg.

3-40

Signal Generation Functions

(] = [=] &3

File Tools View Simulation Help N

- 4P| - A& FH-

Ready T=1:3.000

Signal Generation Functions
Some signal generation functions use the temporal operator et, which is the elapsed time

of the test step in seconds. Scaling, rounding, and other approximations of argument
values can affect function outputs. Common signal generation functions include:

3-41

3 Test Sequences and Verifications

Function Syntax Description Example
square square(x) Represents a square wave |Output a square wave with
output with a period of 1 |a period of 10 sec:
and range —1 to 1.
square(et/10)
Within the interval 0 <=
X < 1, square(x)
returns the value 1 for 0
<= X < 0.5and -1 for
0.5 <= x < 1.
sawtooth sawtooth(x) |Represents a sawtooth Output a sawtooth wave
wave output with a period |[with a period of 10 sec:
of 1 and range —1 to 1.
sawtooth(et/10)
Within the interval 0 <=
X < 1, sawtooth(x)
increases.
triangle triangle(x) |Represents a triangle Output a triangle wave
wave output with a period |with a period of 10 sec:
of 1 and range —1 to 1. .
triangle(et/10)
Within the interval 0 <=
X < 0.5, triangle(x)
increases.
ramp ramp (x) Represents a ramp signal |Ramp one unit for every 5
of slope 1, returning the |seconds of test step
value of the ramp at time |elapsed time:
* ramp(et/5)
ramp (et) effectively
returns the elapsed time
of the test step.
heaviside heaviside(x) |Represents a heaviside Output a heaviside signal
step signal, returning 0 for |after 5 seconds:
X < 0and1forx >= 0.
heaviside(et-5)

3-42

Signal Generation Functions

Function Syntax Description Example
latch latch(x) Saves the value of x at the |Latch b to the value of
first time latch(x) torque:
evaluates in a test step,
and subsequently returns |P = latch(torque)
the saved value of x.
Resets the saved value of
x when the step exits.
Reevaluates latch(x)
when the step is next
active.
sin sin(x) Returns the sine of x, A sine wave with a period
where X is in radians. of 10 sec:
sin(et*2*pi/10)
cos cos (x) Returns the cosine of X, A cosine wave with a
where X is in radians. period of 10 sec:
cos(et*2*pi/10)
rand rand Uniformly distributed Generate new random

pseudorandom values

values for each simulation
by declaring rand
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('rand"')
nr rand
sg a + (b-a)*nr

3-43

3 st Sequences and Verifications

3-44

Function Syntax

Description

Example

randn randn

Normally distributed
pseudorandom values

Generate new random
values for each simulation
by declaring randn
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('randn'
nr randn
sg nrx*2

exp exp(x)

Returns the natural

exponential function, ¢*.

An exponential signal
progressing at one tenth
of the test step elapsed
time:

exp(et/10)

See Also

“Syntax for Test Sequences and Assessments” on page 3-57 | Test Sequence

Related Examples

. “Test Step Actions and Transitions” on page 3-28

. “Run-Time Assessments” on page 3-45

Run-Time Assessments

Run-Time Assessments

In this section...

“verify” on page 3-45

“assert” on page 3-47

“Assessment Statements” on page 3-48
“Logical Operators” on page 3-49
“Relational Operators” on page 3-50

A verify statement sends results to the Test Manager and allows simulation to run even
when the logical condition fails. An assert statement stops simulation. You can use
verify and assert statements to assess your model.

verify

The verify keyword assesses a logical expression inside a Test Sequence or Test
Assessment block. Optional arguments label results in the Test Manager and diagnostic
viewer. The keyword and arguments constitute a verify statement. Use the logical
expression to define a verification constraint on the system under test.

For each simulation step, the verify statement reports whether the logical expression
fails, passes, or is untested. For an overall test, a verify statement returns an overall
fail, pass, or untested result. Any failure at a simulation step results in an overall failure.
If the verify statement does not fail, and at any simulation time step the statement
passes, the overall result passes. Otherwise, the statement is not tested, and the overall
result is untested. Review results in the Verify Statements section of the Test Manager.

Syntax

A verify statement uses syntax of these forms

verify(expression)
verify(expression,errorMessage)
verify(expression,identifier,errorMessage)

The simplest verify statement uses only a logical expression. To make results easier to
interpret, use additional arguments to define an error message and a statement identifier.
Error messages display in the diagnostic viewer. You can use error messages to display
key values at the time the statement fails.

3-45

3 Test Sequences and Verifications

For example, if verify evaluates an expression containing variables x and y, you can
display the values of x and y using the string:

'x and y values are %d, %d',Xx,y

An identifier labels the verify results in the Test Manager. The identifier uses a string of
the form 'prefix:suffix'. prefix and suffix are alphanumeric strings. For
example:

'SimulinkTest:x equals y'
Continuous-Time Considerations

verify is not supported in Test Sequence blocks that use continuous-time updating. Test
Sequence block data can depend on factors such as the solver step time. Continuous-time
updating can cause differences in when block data and verify statements update, which
can lead to unexpected verify statement results.

If your model uses continuous time and you use verify statements in a Test Sequence or
Test Assessment block, consider explicitly setting a discrete block sample time.

Example

In this comparison of two values, the parent step uses verify statements to assess two
local variables x and y during the simulation. The substeps set two conditions.

+ verify(x >= y) passes overall because it is true for the entire test sequence.

 verify(x == y) and verify(x ~= y) fail because they fail in step 1 2 and
step 1 1, respectively.

Step Transitioh MNext Step
B Comparison_example 1. testFlag == 1 End ¥
werfy(x ==y, 'SimulinkTest»_equals_y' % and v values are %d, %d' Xy)
YRR ~= 1y, 'SimulinkTestx_notEquals ' and y values are %d, %d' X y)
YRR >= Yy, 'SimulinkTestx_greatherThanEqTo_y' % and v values are %d, %d' Xy
p_1_1 1. after(1 sec) step 1 2¥
2y =2,
p_1_2 1. after(1,sec) change ¥
=3y =2

3-46

Run-Time Assessments

The Test Manager displays the results.

Resulis and Ariifacts @ ystartPage x [5] NewTestCase1 x | [Visualize x

11}
‘::I;[

W SimulinkTestx_notEquals_y

= |=| New Test Case 1
= [zl Venfy Statements
SimulinkTest:x_equals_y

SimulinkTest:x_greatherThanEqTo_y

o 00 00

+ SimulinkTest:x_notEquals_y

fPul Sim Output (sltestVerifyStatementExample: Pass

Name [\J SimulinkTestx_notEquals_y
Block Path sltest\VerifyStatementExamples...
Interp Method zoh

Sync Method union

Untested +—— otioadondooiontr TETTETTET TIETErT e TETTETT R TR TR TR AR SELLEEEEEEY

assert

assert evaluates a logical argument, but unlike verify, assert stops simulation.
assert does not return fail, pass, or untested results. Failures appear as errors. Consider
using assert statements to avoid executing a bad test. For example, if a component
under test outputs two signals h and k, and the test requires h and K initialized to 0, use
assert to stop the test if the signals do not initialize.

To make results easier to interpret, add an optional message that evaluates when the
assertion fails. This example demonstrates an assert statement that returns a message
if the logical condition fails.

3-47

3 Test Sequences and Verifications

Step

Initizlize Check

assert(h == 0 &&

step_1

test_output = true;

3-48

Transition

== 0/'signals must initialize to 0Y,;

1. after(1,5ec)

Next Step

step 200F

Code is not generated for assert statements in the Test Sequence block.

Assessment Statements

To verify simulation, stop simulation, and return verification results, use assessment

statements.
Keywor |Statement Syntax Description Example
d
verify |verify(expression) Assesses a logical |verify(x >vy,...
expression. 'SimulinkTest:greaterThan' .
verify(expression, Optional ‘x and y values are %d, %d|,x,y)
errorMessage) arguments label
i i results in the Test
verify(expression, Manager and
identifier, diagnostic viewer.
errorMessage)
assert |assert(expression) Evaluates a logical |assert(h == 0 && k == 0, ..}
expression. 'h and k must initialize tp 0')

assert(expression,

errorMessage)

Failure stops
simulation and
returns an error.
Optional
arguments return
an error message.

Syntax in the table uses these arguments:

Run-Time Assessments

expression

Logical statement assessed
Examples:

h>06&& k ==0
identifier

Label applied to results in the Test Manager

identifiers aaa, bbb, and zzz.

Examples:

'SimulinkTest:greaterThan'

errorMessage

Label applied to messages in the diagnostic viewer
Value: String

Examples:
'x and y values are %d, %d',x,y
Logical Operators

You can use logical connectives in actions, transitions, and assessments. In these
examples, p and q represent Boolean signals or logical expressions.

Operation Syntax Description Example
Negation ~p not p verify(~p)
Conjunction p & q p and q verify(p && q)
Disjunction p |l g p or q verify(p || q)

3-49

3 Test Sequences and Verifications

Operation Syntax Description Example

Implication ~p || q if p, g. Logically verify(~p || q)
equivalent to
implication p - q.

Biconditional (p & q) || (~p |pandgq, ornotpand |verify((p && q)
&& ~q) not q. Logically [] (~p & ~q))
equivalent to
biconditional p « q.

Relational Operators

You can use relational operators in actions, transitions, and assessments. In these
examples, x and y represent numeric-type variables.

Using == or ~= operators in a verify statement returns a warning when comparing
floating-point data. Consider the precision limitations associated with floating-point
numbers when implementing verify statements. See “Floating-Point Numbers”
(MATLAB). If you use floating-point data, consider defining a tolerance for the
assessment. For example, instead of verify(x == 5), verify x within a tolerance of
0.001:

verify(abs(x-5) < 0.001)

Operator and Syntax Description Example

X >y Greater than verify(x > vy)
X <Yy Less than verify(x < vy)
X >=y Greater than or equal to verify(x >= vy)
X <=y Less than or equal to verify(x <= vy)
X ==y Equal to verify(x == y)
X ~=Yy Not equal to verify(x ~= vy)
See Also

“Syntax for Test Sequences and Assessments” on page 3-57 | Test Sequence

3-50

See Also

Related Examples
. “Test Step Actions and Transitions” on page 3-28
. “Signal Generation Functions” on page 3-37

3-51

3 Test Sequences and Verifications

Programmatically Create a Test Sequence

This example shows how to create a test sequence programmatically. You create a Test
Sequence block, and author a test sequence to verify two safety requirements of a cruise
control system.

Create a Test Harness Containing a Test Sequence Block

1. Open the cruise control project, and open the model. This creates a working copy of the
project in your MATLAB folder.

slVerificationCruiseStart;
open_system simulinkCruiseAddReqExample.slx

2. Create and open the test harness.

sltest.harness.create('simulinkCruiseAddReqExample', 'Name', 'SafetyTestHarness',...
'Source', 'Test Sequence')

sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTestHarness")

set param('SafetyTestHarness', 'StopTime','15");

Author the Test Sequence

1. Add a local variable endTest, which you use to transition between test steps, and set
the data type to boolean.

sltest.testsequence.addSymbol('SafetyTestHarness/Test Sequence', 'endTest',...
'Data', 'Local');

sltest.testsequence.editSymbol('SafetyTestHarness/Test Sequence', 'endTest',...
'DataType', 'boolean');

2. Change the name of the step Run to Initializel.

sltest.testsequence.editStep('SafetyTestHarness/Test Sequence', 'Run',...
"Name', 'Initializel');

3. Add a step BrakeTest to test that the cruise control disengages when the brake is
applied. Also add substeps defining the test scenario actions and verification.

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence', ...
'BrakeTest', 'Initializel', 'Action', 'endTest = false;')

% Add a transition from |Initializel| to |BrakeTest]|.

3-52

Programmatically Create a Test Sequence

sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
'Initializel', 'true', 'BrakeTest')

% This sub-step enables the cruise control and sets the speed.

% |SetValuesActions| is the actions for BrakeTest.SetValues.

setValuesActions = sprintf('CruiseOn0ff = true;\nSpeed = single(50);"');

sltest.testsequence.addStep('SafetyTestHarness/Test Sequence', ...
'BrakeTest.SetValues', 'Action',setValuesActions)

% This sub-step engages the cruise control.

setCCActions = sprintf('CoastSetSw = true;');

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'BrakeTest.Engage', 'BrakeTest.SetValues', 'Action',setCCActions)

% This step applies the brake.

brakeActions = sprintf('CoastSetSw = false;\nBrake = true;"');

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'BrakeTest.Brake', 'BrakeTest.Engage', 'Action',brakeActions)

% This step verifies that the cruise control is off.

brakeVerifyActions = sprintf('verify(engaged == false)\nendTest = true;"');

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'BrakeTest.Verify', 'BrakeTest.Brake', 'Action',brakeVerifyActions)

% Add transitions between steps.
sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
'BrakeTest.SetValues', 'true', 'BrakeTest.Engage')
sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence', ...
'BrakeTest.Engage', 'after(2,sec)', 'BrakeTest.Brake')
sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence', ...
'BrakeTest.Brake', 'true', 'BrakeTest.Verify')

4. Add a step Initialize?2 to initialize component inputs again, and add a transition
from BrakeTest to Initialize2

init2Actions = sprintf(['CruiseOn0ff = false;\n'...

'Brake = false;\n'...

'Speed = single(0);\n'...

'CoastSetSw = false;\n'...

"AccelResSw = false;']);
sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence', ...

'Initialize2', 'BrakeTest', 'Action',init2Actions)
sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...

'BrakeTest', 'endTest == true','Initialize2')

3-53

3 Test Sequences and Verifications

5. Add a step LimitTest to test cruise control disengagement when the vehicle speed
exceeds the high limit. Also, add a transition from the Initialize2 step, and add sub-
steps to define the scenario actions and verification.

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'LimitTest', 'Initialize2')

sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
'Initialize2', 'true', 'LimitTest')

% Add a step to enable cruise control and set the speed.

setValuesActions2 = sprintf('CruiseOnOff = true;\nSpeed = 60;");

sltest.testsequence.addStep('SafetyTestHarness/Test Sequence',...
'LimitTest.SetValues', 'Action',setValuesActions2)

% Add a step to engage the cruise control.

setCCActions = sprintf('CoastSetSw = true;"');

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'LimitTest.Engage', 'LimitTest.SetValues', 'Action',setCCActions)

% Add a step to ramp the vehicle speed.
sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'"LimitTest.RampUp', 'LimitTest.Engage', 'Action', 'Speed = Speed + ramp(5*et);"')

% Add a step to verify that the cruise control is off.

highLimVerifyActions = sprintf('verify(engaged == false)');

sltest.testsequence.addStepAfter('SafetyTestHarness/Test Sequence',...
'LimitTest.VerifyHigh', 'LimitTest.RampUp', 'Action',highLimVerifyActions)

% Add transitions between steps. The speed ramp transitions when the

% vehicle speed exceeds 90.

sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
'LimitTest.SetValues', 'true','LimitTest.Engage')

sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
'LimitTest.Engage', 'true','LimitTest.RampUp')

sltest.testsequence.addTransition('SafetyTestHarness/Test Sequence',...
"LimitTest.RampUp', 'Speed > 90', 'LimitTest.VerifyHigh')

Double-click the Test Sequence block to open the editor and view the created test
sequence.

3-54

Programmatically Create a Test Sequence

—
Salely TestHarmess/Tesl Sequence ™ - Tesl Sequence Edilur

=

Symbols
Input

1. |} engaged

2. i) tspeed
Output

1. 154 CruiseOnOff

2 |5 Brake

3. |5 Speed

4. |14 CoastSetsw

5 Ll ArcelRRsSw
Loeal

endTest

Constant
Parameter

Data Store Memory

Initialize1

%% Initialize data outputs.
CruiseOnOff = felee;
Brake = false;

Speed = single(C);
CoastSetSw = false;
AccelResSw = [alse;

BrakeTest
endTest = false;

SefValues
CruiseOnOff = true;
Speed = single(50);

Engage
CoastSetSw = true;

Brako
CoastSetSw = false;
Brake = lrue,;

Verify
verfy(engaged == falsz)
endTest = true;

Initialize2
CruiseOnOff = false;
Brake = false;
Speed = single(();
CoastSetSw = false;
AccelResSw = false;

LimitTest

SefValues

1

1

1

1

1

4 B E s @5 4 e b

Step Transition

. true

Add tr

. endTest == true

. true

. after2,sec)

. lrue

_true

true

-

Next Step
BrakeT... ¥

ansiian

Initiglize2 v

Engage ¥

Brake A

Verily A

-4

LimitTest

Enoane ¥

Description

444
QJ_‘;,L%

O

s

®v

~

3-55

3 Test Sequences and Verifications

Close the Test Harness and Model
sltest.harness.close('simulinkCruiseAddReqExample', 'SafetyTestHarness');

close system('simulinkCruiseAddRegExample.slx',0);
slproject.closeCurrentProject;

3-56

Syntax for Test Sequences and Assessments

Syntax for Test Sequences and Assessments

In this section...

“Assessment Statements” on page 3-57
“Temporal Operators” on page 3-59
“Transition Operators” on page 3-60
“Signal Generation Functions” on page 3-61
“Logical Operators” on page 3-64

“Relational Operators” on page 3-65

This topic describes syntax used in Test Sequence and Test Assessment blocks. You can
also work with Test Sequence blocks using the test sequence API, which provides
functions to create, read, edit, and delete test sequence steps, transitions, and data
symbols. See the functions listed in the Test Sequence Programming section on the
“Test Sequences and Assessments” page.

Within test step actions, transitions, and assessments, Test Sequence and Test
Assessment blocks use MATLAB as the action language. In addition to the MATLAB
language, the block includes keywords and operators to create action, transition, and
assessment statements. For example:

* Output a square wave with a period of 10 sec:

square(et/10)
* Transition when h changes to 0:

hasChangedTo(h,0)
» Verify that x is greater than y:

verify(x > vy)

Assessment Statements

To verify simulation, stop simulation, and return verification results, use assessment
statements.

3-57

3 st Sequences and Verifications

3-58

assert(expression,
errorMessage)

expression.
Failure stops
simulation and
returns an error.
Optional
arguments return
an error message.

Keywor |Statement Syntax Description Example
d
verify |verify(expression) Assesses a logical |verify(x >vy,...
expression. 'SimulinkTest:greaterThan'
verify(expression, Optional 'x and y values are %d, %d
errorMessage) arguments label
) i results in the Test
verify(expression, Manager and
identifier, diagnostic viewer.
errorMessage)
assert |assert(expression) Evaluates a logical |assert(h == 0 && k == 0, ..}

'h and k must initialize t

Syntax in the table uses these arguments:

expression

Logical statement assessed

Examples:

h >0 &

k ==

identifier

Label applied to results in the Test Manager

identifiers

Examples:

aaa, bbb, and zzz.

'SimulinkTest:greaterThan'

Syntax for Test Sequences and Assessments

errorMessage

Label applied to messages in the diagnostic viewer

Value: String

Examples:

'x and y values are %d,

Temporal Operators

°d',X,y

To create an expression that evaluates the simulation time, use temporal operators.
Variables used in signal conditions must be inputs, parameters, or constants in the Test

Sequence block.

Operato |Syntax Description Example
r
et et (TimeUnits) |The elapsed time of the |The elapsed time of the test
test step in TimeUnits. [sequence step in milliseconds:
Omitting TimeUnits
returns the value in et(msec)
seconds.
t t(TimeUnits) The elapsed time of the |The elapsed time of the
simulation in simulation in microseconds:
TimeUnits. Omitting
TimeUnits returns the |t(usec)
value in seconds.
after after(n, Returns trueifn After 4 seconds:
TimeUnits) specified units of time
in TimeUnits elapse |after(4,sec)
since the beginning of
the current test step.
before before(n, Returns true until n Before 4 seconds:
TimeUnits) specified units of time
in TimeUnits elapse, |Pefore(4,sec)
beginning with the
current test step.

3-59

3 Test Sequences and Verifications

Operato |Syntax Description Example

r

duration |ElapsedTime = |Returns ElapsedTime |Return true if the time in
duration in TimeUnits for milliseconds since Phi > 1is
(Condition, which Condition has |greater than 550:
TimeUnits) been true.

ElapsedTime is reset duration(Phi>1,msec) > 550

when the test step is re-
entered or when
Condition is no longer
true.

Syntax in the table uses these arguments:
TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec
Condition

Logical expression triggering the operator. Variables used in duration can be inputs,
parameters, or constants, with at most one local or output data.

Examples:

u>2~0
X <= 1.56

Transition Operators

To create expressions that evaluate signal events, use transition operators. Common
transition operators include:

3-60

Syntax for Test Sequences and Assessments

Operator Syntax Description Example
hasChanged hasChanged (u) Returns true if u Transition when h
changes in value changes:
since the beginning
of the test step, hasChanged(h)
otherwise returns
false.
u must be an input
data symbol.
hasChangedFrom |hasChangedFrom(u,A) |Returns true if u Transition when h
changes from the changes from 1:
value A, otherwise
returns false. hasChangedFrom(h,1
u must be an input
data symbol.
hasChangedTo hasChangedTo(u,B) |Returns true if u Transition when h

changes to the value
B, otherwise returns
false.

u must be an input
data symbol.

changes to 0:

hasChangedTo(h,0)

Signal Generation Functions

Some signal generation functions use the temporal operator et, which is the elapsed time
of the test step in seconds. Scaling, rounding, and other approximations of argument
values can affect function outputs. Common signal generation functions include:

3-61

3 Test Sequences and Verifications

Function Syntax Description Example
square square(x) Represents a square wave |Output a square wave with
output with a period of 1 |a period of 10 sec:
and range —1 to 1.
square(et/10)
Within the interval 0 <=
X < 1, square(x)
returns the value 1 for 0
<= X < 0.5and -1 for
0.5 <= x < 1.
sawtooth sawtooth(x) |Represents a sawtooth Output a sawtooth wave
wave output with a period |[with a period of 10 sec:
of 1 and range —1 to 1.
sawtooth(et/10)
Within the interval 0 <=
X < 1, sawtooth(x)
increases.
triangle triangle(x) |Represents a triangle Output a triangle wave
wave output with a period |with a period of 10 sec:
of 1 and range —1 to 1. .
triangle(et/10)
Within the interval 0 <=
X < 0.5, triangle(x)
increases.
ramp ramp (x) Represents a ramp signal |Ramp one unit for every 5
of slope 1, returning the |seconds of test step
value of the ramp at time |elapsed time:
* ramp(et/5)
ramp (et) effectively
returns the elapsed time
of the test step.
heaviside heaviside(x) |Represents a heaviside Output a heaviside signal
step signal, returning 0 for |after 5 seconds:
X < 0and1forx >= 0.
heaviside(et-5)

3-62

Syntax for Test Sequences and Assessments

Function Syntax Description Example
latch latch(x) Saves the value of x at the |Latch b to the value of
first time latch(x) torque:
evaluates in a test step,
and subsequently returns |P = latch(torque)
the saved value of x.
Resets the saved value of
x when the step exits.
Reevaluates latch(x)
when the step is next
active.
sin sin(x) Returns the sine of x, A sine wave with a period
where X is in radians. of 10 sec:
sin(et*2*pi/10)
cos cos (x) Returns the cosine of X, A cosine wave with a
where X is in radians. period of 10 sec:
cos(et*2*pi/10)
rand rand Uniformly distributed Generate new random

pseudorandom values

values for each simulation
by declaring rand
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('rand"')
nr rand
sg a + (b-a)*nr

3-63

3 Test Sequences and Verifications

3-64

Function

Syntax

Description

Example

randn

randn

Normally distributed
pseudorandom values

Generate new random
values for each simulation
by declaring randn
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('randn'
nr randn
sg nrx*2

exp

exp(x)

Returns the natural

exponential function, ¢*.

An exponential signal
progressing at one tenth
of the test step elapsed
time:

exp(et/10)

Logical Operators

You can use logical connectives in actions, transitions, and assessments. In these
examples, p and q represent Boolean signals or logical expressions.

Operation Syntax Description Example
Negation ~p not p verify(~p)
Conjunction p & q p and q verify(p && q)
Disjunction p |l g p or q verify(p || q)
Implication ~p || q if p, q. Logically verify(~p || q)
equivalent to
implication p - q.
Biconditional (p & q) || (~p |pandq, ornotp and |verify((p && q)
& ~q) not g. Logically [] (~p & ~q))
equivalent to
biconditional p < q.

See Also

Relational Operators

You can use relational operators in actions, transitions, and assessments. In these
examples, x and y represent numeric-type variables.

Using == or ~= operators in a verify statement returns a warning when comparing
floating-point data. Consider the precision limitations associated with floating-point
numbers when implementing verify statements. See “Floating-Point Numbers”
(MATLAB). If you use floating-point data, consider defining a tolerance for the
assessment. For example, instead of verify(x == 5), verify x within a tolerance of
0.001:

verify(abs(x-5) < 0.001)

Operator and Syntax Description Example

X >y Greater than verify(x > vy)
X <Yy Less than verify(x < vy)
X >=y Greater than or equal to verify(x >= vy)
X <=y Less than or equal to verify(x <= vy)
X ==Yy Equal to verify(x == vy)
X ~=y Not equal to verify(x ~=vy)
See Also

Related Examples

. “Run-Time Assessments” on page 3-45

. “Test Step Actions and Transitions” on page 3-28

. “Signal Generation Functions” on page 3-37

. “Programmatically Create a Test Sequence” on page 3-52

3-65

3 Test Sequences and Verifications

Debug a Test Sequence

3-66

In this section...

“View Test Step Execution During Simulation” on page 3-66
“Set Breakpoints to Enable Debugging” on page 3-66
“View Data Values During Simulation” on page 3-67

“Step Through Simulation” on page 3-68

You can debug a test sequence using tools in the test sequence editor. Debugging involves
setting breakpoints to stop simulation, observing data and test sequence progression, and
manually stepping through test steps. You can try these features using the model
sltestTestSeqDebuggingExample. To open the model, enter

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
open_system('sltestTestSegDebuggingExample')

Save a copy of the model to a writable location on the MATLAB path. Double-click the
Test Sequence block to open the test sequence editor.

View Test Step Execution During Simulation

By default, simulation animates the test sequence by highlighting active steps and
transitions. Observing test step execution can help you debug, particularly when manually
stepping through the test sequence. Adjust the animation speed using the Change

Animation Speed button (:’ 7 in the toolbar.

Animation speed affects simulation speed. If you slow down animation speed for
debugging, return the speed to Fast or Lightning Fast when you finish debugging to
avoid slowing your simulation. If you do not need the test step highlights and want the
fastest simulation, choose None.

Set Breakpoints to Enable Debugging

You enable debugging for a test sequence by adding one or more breakpoints.
Breakpoints halt simulation every time the test step is evaluated. Therefore, breakpoints
on some test steps, such as When decomposition parent steps, halt simulation
repeatedly because the step is evaluated repeatedly. When simulation halts, you can view
data used in the test sequence to investigate the sequence simulation behavior.

Debug a Test Sequence

You can add breakpoints to test step actions or transitions:
* To add a breakpoint to a test step action, right-click the test step and select Break
while executing step.

B PowerCycleTest 1. after(3,sec) PowerOnTest v
Powerl = 0.5*square(t)+0.5;

* To add a breakpoint to a test step transition, right-click the test step transition and
select Break when transition taken.

Step Transition
InitializeTest 1. after(1,sec)
FPowerl = Q;

PowerZ = Q;

The editor displays a breakpoint marker. After adding breakpoints, simulate the test
sequence by clicking Run.

View Data Values During Simulation

If the simulation pauses (for example, at a breakpoint), you can view the status of data
used in a test step by hovering over the test step. The data values at the current
simulation time display next to the test sequence cell.

Data used by

F "'u'-':::":'|-| .'u"'u'.|-|'-.T|-| FI':::'-u .'TI-J. == I-.-l pﬂwe rTWDOn !
Power2 ; Power2 = 1
b Powerl = 0

Note If you advance the simulation to another stop (for example, using the keyboard
shortcuts), the data display does not update. Move off the test step and then hover over
the step again to refresh the values.

3-67

3 st Sequences and Verifications

Step Through Simulation

When simulation halts, you can step through the test sequence using the toolbar buttons.
Also see “Debugging and Breakpoints Keyboard Shortcuts” (Simulink).

Objective Details Toolbar Button
Simulate until Simulation runs until the ®

breakpoint next breakpoint

Step forward Simulation advances one 0>

through simulation |simulation step

time

Step forward Simulation advances by |

through test step each step of a test -

actions and sequence, with pauses at

transitions actions and transitions.

Does not step into a
function call.

Step in to a test step |Simulation advances into ﬂEl
group or called the substeps of a parent -
function step and executes each
action and transition.
Steps into a function

call.
Step out of a test Simulation advances |jf
step group or called |through the remaining
function substeps of a parent step

and then out to the
parent step hierarchy
level. Also finishes
execution of a function
call.

See Also

“Test Sequence Editor” on page 3-22 | Test Sequence

3-68

Test a Model Component Using Signal Functions

Test a Model Component Using Signal Functions

In this section...

“Create a Test Sequence” on page 3-69

“Simulate the Test Harness” on page 3-70

Using the Test Sequence block, you can define a set of input functions to test your
component, and conditionally switch the function based on component signals. See Test
Sequence for more information.

This example demonstrates building and simulating a test sequence using ramp and
square wave signals. The test initializes at constant temperature, ramps down to a limit,
and executes a square-wave temperature cycle.

Create a Test Sequence

1 Access the model. Enter

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB path:
sltestSignalFunctionExample.slx

sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model, and open the harness.
open_system('sltestSignalFunctionExample');

sltest.harness.open('sltestSignalFunctionExample/Controller’,...
'RampSquareHarness')

T=t

1 Teet =
control &3t contrl_out >

3
m_in L L— i Troom_in

b4
@
'

TestSequence

Controlier

4 Double-click the Test Sequence block to open the test sequence editor.

3-69

3 Test Sequences and Verifications

5 Rename the first and second steps. Delete the default names and replace them with

const 90 and ramp_down.

6 Add a third step to the table. Right-click the ramp down line, and select Add step

after. Name the third step temp step.

7 Add output conditions and transition fields to the steps. Copy and paste the listings

from the table.
Step Transition Next step
const 90 after(120,sec) ramp_down
Tset = 75;
Troom in = 90;
ramp_down Troom in <= 60 temp step
Tset = 75;
Troom in = 90-ramp(et)/8;
temp_step
Tset = 75;
Troom _in = 75+15*square(et/90);

Step Transition Next Step
const_390 1. after(120,sec) ramp_down
Teet=75;

Troom_in = 90;

ramp_down 1. Troom_in <= 60 temp_step
Teet =T75;

Troom_in = 90-ramp(et)/8;

temp step

Teet=75;

Troom_in = 75+15"square(et/90);

Simulate the Test Harness

1 Set the simulation time to 720 sec.

2 Simulate the Test Harness. Observe the Troom in signal in the scope.

3-70

See Also

See Also

Blocks
Test Sequence

3-71

3 Test Sequences and Verifications

Test Downshift Points of a Transmission Controller

This example demonstrates how to test a transmission shift logic controller using test
sequences and test assessments.

The Model and Controller

This example uses a simplified drivetrain system arranged in a controller-plant
configuration. The objective of the example is to test the transmission controller in
isolation, ensuring that it downshifts correctly.

The Test

The controller should downshift between each of its gear ratios in response to a ramped
throttle application. The test inputs hold vehicle speed constant while ramping the
throttle. The Test Assessment block includes requirements-based assessments of the
controller performance.

path = fullfile(matlabroot, 'examples', 'simulinktest');
mdl = 'TransmissionDownshiftTestSequence';

harness = 'controller harness';
open_system(fullfile(path,mdl));

brake

thirottle

3-72

brake

throtile Ot (1)
|-

gear

shift_controller vehiclke

Testing Downshift Points of a Transmission Controller
Coopyright 2014-2017 The MathWorks, Inc.

Test Downshift Points of a Transmission Controller

Open the Test Harness

Click the badge on the subsystem shift controller and open the test harness
controller harness.shift controller is connected to a Test Sequence block and
a Test Assessment block.

sltest.harness.open([mdl '/shift controller'],harness)

h 4

h 4

; " speed H
Sar - - -T-
.; = (]
%] -
the >
throttle
gear

) 1
speed”

FloatingScope 3
throttle

Copyright 2014-2017 The MathWarks, Inc.

Y

¥

¥

The Test Sequence
Double-click the Test Sequence block to open the test sequence editor.

The test sequence begins by ramping speed to 75 to initialize the controller to fourth
gear. Throttle is then ramped at constant speed until a gear change. Subsequent
initialization and downshifts execute. After the change to first gear, the test sequence
stops.

open_system([harness '/Test Sequence']);

3-73

3 st Sequences and Verifications

Step Transition Next Step
initialize_4 3 1. speed == 75 down 4 3 ¥
throttle = 10; -

speed = O0+ramp(25*et);

down_4_3 1. hasChanged(gear) initialize_3 2 v
throttle = 10+ramp(10*et);
speed =75;

initialize_3 2 1. after(4,sec) down_3_2 Y
throttle = 10;
speed = 45;

down_3_2 1. hasChanged(gear) initialize_2_1 v
throttle = 10+ramp(10*et);
speed = 45;

initialize 2 1 1. after(4,sec) down_2_1 ¥
throttle = 10;
speed = 15;

down_2_1 1. hasChanged(gear) stop v
throttle = 10+ramp(10*et);
speed = 15;

stop
throttle = 0;
speed =0;

Test Assessments for the Controller

The requirements for the shift controller include conditions which would invalidate the
test.

3-74

Test Downshift Points of a Transmission Controller

* Speed shall never be negative.
* Gear shall always be positive.
» Throttle shall be between 0% and 100%.

In addition, the functional requirement tested is that the shift controller shall keep the
vehicle speed below specified maximums in each of the first three gears.

Open the Test Assessment block. These assertions in the block correspond to the first
three requirements. If the controller violates one of the assertions, the simulation fails.

assert(speed >= 0, 'speed must be >= 0');

assert(throttle >= 0, 'throttle must be >= 0 and <= 100');
assert(throttle <= 100, 'throttle must be >= 0 and <= 100');
assert(gear > 0, 'gear must be > 0');

The last requirement has three sub-requirements.

* The controller shall not let the vehicle speed exceed 90 in gear 3.
» The controller shall not let the vehicle speed exceed 50 in gear 2.
» The controller shall not let the vehicle speed exceed 30 in gear 1.

You can model these assessments with a When decomposition sequence. When
decomposition step selection is based on signal conditions defined in the Step column,
with each condition preceded by the when operator. The Transition and Next Step
columns do not affect the transition. The last step Else covers any undefined condition
and does not use a when declaration.

To change a sequence to a When decomposition, right-click a step and select When
decomposition. Sub-steps of this step then operate using the when operator. The
assessments use verify statements so that results are available in the Simulation Data
Inspector, and so that failures do not stop simulation.

OverSpeed3 when gear==3
verify(speed <= 90, 'Engine overspeed in gear 3')

OverSpeed2 when gear==2
verify(speed <= 50, 'Engine overspeed in gear 2')

OverSpeedl when gear==1
verify(speed <= 30, 'Engine overspeed in gear 1')

3-75

3 Test Sequences and Verifications

Step Transition Next Step

B

3-76

AssertConditions
% These conditions ensure simulation validity.

assertispeed == 0, 'speed must be == 0');
assert{throttle == 0, 'throttle must be == 0 and <= 100');

assert{throttle <= 100, 'throttle must be >= 0 and <= 100'};
assertigear > 0,'gear must be > 0');

OverSpeed3 when gear==
% Verify speed within specified range for 3rd gear

verify(speed == 90,'Engine overspeed in gear 3')

OverSpeed2 when gear==
% Verify speed within specified range for 2nd gear

verify{speed <=50,'Engine overspeed in gear 2')

OverSpeedl when gear==
% Verify speed within specified range for 1st gear

verify(speed <= 30,'Engine overspeed in gear 1Y)

Else
% Else step required for any conditions not corresponding to
% the above three when conditions

Testing the Controller

Simulate the test harness demonstrates the progressive throttle ramp at each test step,
and the corresponding downshifts. The controller passes all of the assessments in the Test
Assessment block.

open_system([harness '/FloatingScope'])
sim(harness);

Test Downshift Points of a Transmission Controller

(4] o || =[] ER
File Tools View Simulation Help N
9-|40P@®E-=-3-T-&-

speed
.

throttle

Feady T=43.000

View the Results

Click the Simulation Data Inspector button in the test harness toolstrip to view the
results. You can compare the speed signal to the verify statement outputs.

Simulink.sdi.view

3-77

3 Test Sequences and Verifications

Inspect Compare speed
Q_Filter Sig '
HANE LINE
» Run 1: controller_harness 50 ,"
speed —— {
)
; . a
Test Assessment_/OverSpeed2verify(speed ==50) & = e . e = Ao S
U S U T P T TR W Test Assessment/. /OverSpeed3.verify(speed == 90)
Fail
[[NPSI NUUSN PUVSTUSTURIS VOUUTVUTRS VRS ST AT A E—
FROPERTIES
Mame TestAssessment/ . /OverSpeed3v..
m a B
Line 0 5 10 15 20 25 a0 5

Simulink.sdi.close
close system(mdl);

3-78

Test Assessment Reuse

Test Assessment Reuse

If one test assessment covers many test cases, consider reusing the assessment from a
single source such as a library. Reusing test assessments allows you to update and
manage the source rather than multiple copies of the same assessment. Often, such
assessments are associated with broad requirements such as:

* “The speed signal must never be negative.”

* “The cruise control must never be engaged while the brake is engaged.”

* “The heat pump must wait more than 5 seconds before switching from on to off or off
to on.”

* “The projector temperature must never exceed 65 degrees Celsius.”

Reuse Test Assessments Using a Library

This example shows how to reuse test assessments contained in a test sequence block
using a linked block from a library.

When you create a test harness, you can include a standalone Test Sequence block for
test assessments (a Test Assessment block). Often, assessments cover multiple test cases,
making it convenient to reuse the same Test Assessment block. Test assessment reuse has
these advantages:

» Assessments are stored in a single source. If the requirements change, you update
only the assessments in the library.

* You can link to test requirements from the source. Linking from the source reduces
the number of requirements links to manage.

To reuse a standalone Test Assessment block in multiple test harnesses, create the Test
Assessment block in a library, and reuse the Test Assessment block in multiple test
harnesses by way of linked blocks.

Consider using a library for high-level test assessments that correspond to multiple test
cases.

You can also create reusable assessments in a library using blocks from the Model
Verification library in Simulink.

3-79

3 Test Sequences and Verifications

Explore the Test Sequence Example Model

1. Open the model. At the command line, enter:

sltestTestSequenceExample

Testing Downshift Points of a Transmission Controller

This example shows how to create a Test Harmess with a Test Sequance block as a source.

GO <Gl
brake
2 >t
Ehae
[hrottie] >——| throttle Cutt 1)
|
shift_controller wehicle

Copyright 2016 The MathWorks, Inc.

2. Click the badge on the shift controller subsystem and open the
controller harness test harness.

3-80

Test Assessment Reuse

Test Harness belonging to sitest q hift_e

¥

¥

I e
apeed N 1
1 speed " vehicle
gear| 2 speed I —— -T- throttlg 2
gear
3 the » 3
" -
-T- »|gear
Signal spec. shift_controdler Signal spec.

and routing and routing Test Azsessment Block

Copyright 2016 The MathWorks, Inc.

The Test Assessment block contains four assertions that define the assessment criteria:

assert(speed >= 0)
assert(throttle >= 0)
assert(throttle <= 100)
assert(gear > 0)

Create a Library for the Test Assessments

In the test harness, select File > New > Library.

2 Save the new library as AssessmentLibrary in a writable location on the
MATLAB® path.

3 Copy the Test Assessment block from the test harness to the library, and then delete
the Test Assessment block from the test harness.

4 Save the library.

3-81

3 Test Sequences and Verifications

3-82

Assessmentlibrary

® |PaAssessmentLlibrary

&
£l
Ngear

1
(&= Mspeed =

=2
|:| Mthrattle

Test Assessment
@
o

Create a Linked Test Assessment Block in Test Harnesses

Copy the Test Assessment block from the library to the test harness to create a linked
block.

1 In the test harness, enable the library link display. Select Display > Library Links >
All

2 Copy the Test Assessment block from AssessmentLibrary into
controller_harness. The block displays a library link badge.

3 Connect the signal inputs to the Test Assessment block.

Test Assessment Reuse

Test Harness belonging to sitestTestSequenceExample/shift_controller

h 4

spead

1 speed
[2
3 the

Tesl Sequence

]

Floating
Scope

throttle

¥

shill_controller

h

Copyright 2014 The MathWarks, Inc.

Edit the Assessment Block in the Library

1 Unlock the library. Select Diagram > Unlock Library.

gear
1

spesd 2
3
'd'.?ﬂﬂe

Tas! Assessment

2 Add a fifth assertion to the Test Sequence block: assert(gear < 5);
3 Save and close the library. Closing locks the library.

3-83

3 st Sequences and Verifications

View Graphical Results From Model Verification Library

3-84

Simulink® Test™ outputs graphical results of the Model Verification block library so you
can use the Test Manager or Simulation Data Inspector to see when your test
assessments pass and fail.

In addition to warnings or stop-simulation behavior, the graphical results show the block
evaluation results during simulation. Viewing Model Verification block results graphically
helps you to:

* Determine the time step when a failure occurs.
* Debug the model by comparing the verification result with relevant signals.
» Trace failures from the results to the model.

This example shows how to view outputs from Model Verification blocks in the Test
Manager or Simulation Data Inspector.

Open the Model

The model contains a verification subsystem Safety Properties that uses an Assertion
block to check whether the system disengages if the brake has been applied for three
time steps. The verification subsystem also uses Simulink® Design Verifier™ blocks.

open_system(fullfile(matlabroot, 'examples’', 'simulinktest', ...
'sltestCruiseControlDefective'))

View Graphical Results From Model Verification Library

Simulink Test Cruise Control: Output of Model Verification blocks

Size-Typa
Sheaet1 Actual_speed b——
Switches_snable | ——— o -
- throt 1)
Switches_brake f——» throt
/\ #(InBus
Switches_set b——f
Switches_inc ———m target (2)
target
Switches_dec —»
Inputs Controller

] Throttle_Out

Safety Properties

confroller outputs the troftle value based on the difference between the actual and the tanget speede. The controller fails the
requiremeant that it disengages after the brake has been applied.

This model demonstrates the output of Madel Vierification blocks to Simulation Data Inspector and the Test Manager. The cruise I

Copyright 2006-2016 The MathWaorks, Inc.

Simulate the Model and View Results in SDI

sim('sltestCruiseControlDefective')

After the simulation completes, open SDI. The results show that the assertion failed at
0.23 seconds.

Simulink.sdi.view

3-85

3 Test Sequences and Verifications

Q 4 B BrakeAssertion 0]
Inspect Compare Fail
QL Filter Signals
NAWE LINE o
Inputs:4 —
Inputs:5)
Inputs:6 —
4 |
FROPERTIES VALUES | Fass
lName BrakeAssertion
Line —
Units
Data Type s[TestResult
Sample Time
Model sltestCruiseControlD... | |Untested
Block Mame BrakeAssertion 0 01 0z 0.3 0.4 05 0.6 0.7 02 0.9

Highlight Assertion Block in the Model

To find the assertion block in the model, right-click BrakeAssertion in SDI and select
Highlight in Model. The block is highlighted in the verification subsystem.

Brakefssartion

| Locate Defective Behavior '

3-86

Test Harness Software- and
Processor-in-the-Loop

» “SIL Verification for a Subsystem” on page 4-2
* “Test Code in S-Functions” on page 4-7

4 Test Hamness Software- and Processor-in-the-Loop

SIL Verification for a Subsystem

4-2

In this section...

“Create a SIL Verification Harness for a Controller” on page 4-2
“Configure and Simulate a SIL Verification Harness” on page 4-4
“Compare the SIL Block and Model Controller Outputs” on page 4-5

This example shows subsystem verification by ensuring the output of software-in-the-loop
(SIL) code matches that of the model subsystem. You generate a SIL verification harness,
collect simulation results, and compare the results using the simulation data inspector.
You can apply a similar process for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host
computer. Additionally, with PIL simulation, you can verify the compiled object code that
you intend to deploy in production. You can run the PIL object code on real target
hardware or on an instruction set simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode
for model verification. You can compare the SIL or PIL block results with the model
results and collect metrics, including execution time and code coverage. Using the test
harness to perform SIL and PIL verification, you can:

* Manage the harness with your model. Generating the test harness generates the SIL
block. The test harness is associated with the component under verification. You can
save the test harness with the main model.

» Use built-in tools for these test-design-test workflows:

* Checking the SIL or PIL block equivalence
* Updating the SIL or PIL block to the latest model design

* View and compare logged data and signals using the Test Manager and Simulation
Data Inspector.

This example models a closed-loop controller-plant system. The controller regulates the
plant output.

Create a SIL Verification Harness for a Controller

Create a SIL verification harness using data that you log from a controller subsystem
model simulation. You need an Embedded Coder license for this example.

SIL Verification for a Subsystem

Open the example model by entering
rtwdemo sil block

at the MATLAB command prompt,

| rtwdema_sil_black » -
Cutt 4 |:|
b= Ind - Scope
Qut2
Plant

L1 double outd: | In1j single
Ot

single2double doubleZsingle
Controller

Copyright 2004-2013 The MathWorks, Inc

¥ 100% ode3
Save a copy of the model using the name controller model in a new folder, in a
writable location on the MATLAB path.

Enable signal logging for the model. At the command prompt, enter

set param(bdroot, 'SignallLogging', 'on', 'SignalLoggingName’,...

'SIL signals', 'SignallLoggingSaveFormat', 'Dataset')

Right-click the signal into Controller port In1, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller model input.
Select Log signal data and click OK.

4-3

4 Test Hamness Software- and Processor-in-the-Loop

5 Right-click the signal out of Controller port Outl, and select Properties. In the
Signal Properties dialog box, for the Signal name, enter
controller _model output. Select Log signal data and click OK.

Simulate the model.
Get the logged signals from the simulation output into the workspace. At the
command prompt, enter

out _data = out.get('SIL signals');
control inl = out data.get('controller _model input');
control outl = out data.get('controller model output');

8 Create the software-in-the-loop test harness. Right-click the Controller subsystem
and select Test Harness > Create Test Harness (Controller).

9 Set the harness properties:

* Name: SIL harness

* Sources and Sinks: Inport and Outport

* Initial harness configuration: Verification

* Verification Mode: Software-in-the-loop (SIL)
* Select Open harness after creation

Click OK. The resulting test harness has a SIL block.

outt SIL Im] |

In1_control_in1 | Out1

Controller

Configure and Simulate a SIL Verification Harness

Configure and simulate a SIL verification harness for a controller subsystem.

4-4

SIL Verification for a Subsystem

Configure the test harness to import the logged controller input values. From the top
level of the test harness, in the model Configuration Parameters dialog box, in the
Data Import/Export pane, select Input. Enter control inl.Values as the input
and click OK.

Enable signal logging for the test harness. At the command prompt, enter
set param('SIL harness', 'SignallLogging', 'on', 'SignallLoggingName',...
"harness signals', 'SignalLoggingSaveFormat', 'Dataset')

Right-click the output signal of the SIL block and select Properties. In the Signal
Properties dialog box, for the Signal name, enter SIL block out. Select Log
signal data and click OK.

Simulate the harness.

Compare the SIL Block and Model Controller Outputs

Compare the outputs for a verification harness and a controller subsystem.

1

In the test harness model, click the Simulation Data Inspector button ! to open the
Simulation Data Inspector.

In the Simulation Data Inspector, click Import. In the Import dialog box.

* Set Import from to: Base workspace.

* Set Import to to: New Run.

* Under Data to import, select Signal Name to import data from all sources.
Click Import.

Select the SIL block out and controller model out signals in the Runs pane
of the data inspector window.

The chart displays the two signals, which overlap. This result suggests equivalence
for the SIL code. You can plot signal differences using the Compare tab in SDI, and
perform more detailed analyses for verification. For more information, see “Compare
Simulation Data” (Simulink).

Test Code in S-Functions

Create a Test Harness for the Controller

1 Right-click the Controller subsystem and select Test Harness > Create for
‘Controller’.

2 Set the harness properties.

In the Basic Properties tab:

* Set Name to test _harness 1

* Set Sources and Sinks to None and Scope

3 Click OK to create the test harness.

4-9

4 Test Hamess Software- and Processor-in-the-Loop

Add Inputs and Set Simulation Parameters

1 Create a test input for the harness with a constant Tset and a time-varying
Troom_in. Connect a Constant block to the Tset input and set the value to 75.

2 Add a Sine Wave block to the harness model to simulate a temperature signal.
Connect the Sine Wave block to the conversion subsystem input Troom_in_in.

3 Double-click the Sine Wave block and set the parameters:

Parameter Value
Amplitude 15

Bias 75
Frequency 2*pi/3600
Phase (rad) 0

Sample time 1

Select Interpret vector parameters as 1-D.

i

75 control_out_fan_cmd

Constant

i

control_out_pump_cmd

'ﬁLLJ Controller_sfcn
Signal spec. :
Sine Wave and routing control_out_pump_dir
Signal spec.
and routing

4 In the Solver pane of the Simulink toolstrip, set Stop time to 3600.

Create a Test Case and Obtain a Baseline

1 In the test harness, select the three output signals from the Output Conversion
Subsystem and right-click one of them. Select Log Selected Signals.

Open the Test Manager. Select Analysis > Test Manager.

From the Test Manager toolstrip, click New to create a test file. Name and save the
test file.

4-10

Test Code in S-Functions

In the test case, under System Under Test , click the i button to load the current
model into the test case.

Expand Test Harness and select test harness 1.

Under Baseline Criteria, click Capture to record a baseline data set from the model
specified under System Under Test. Save the baseline data set to the working
folder. The model runs and the baseline criteria appear in the table.

Run the Test Case and View Results

1

Run the selected test case.

The Test Manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

Expand the results until you see the baseline criteria result.
The overall baseline test passes.
- [zl Baseline Criteria Result

) control_out_fan_cmd

I control_out_pump_cmd

o 0 0 O

I control_out_pump_dir

4-11

Simulink Test Manager Introduction

5 Simulink Test Manager Introduction

Introduction to Test Manager

5-2

In this section...

“Start Test Manager” on page 5-2

“Create Tests and Understand the Test Hierarchy” on page 5-2
“View Test Results” on page 5-4

“Share Results” on page 5-4

“Compare Test Files” on page 5-4

Test Manager in Simulink Test helps you to automate Simulink model testing and organize
large sets of tests. You perform model tests in Test Manager using test cases in which you
specify the criteria that determine a pass-fail outcome. After you run a test, you can view
and share the results.

Start Test Manager

You can start Test Manager from a model or from the MATLAB command prompt.

» To start Test Manager from a model, select Analysis > Test Manager.

» To start Test Manager from the command prompt, enter: sltestmgr.

Create Tests and Understand the Test Hierarchy

In Test Manager, you create test files, which contain one or more test suites that each
contain one or more test cases.

To create a test file, select New > Test File. Name the file and click Save.
The test files and their contents appear in the Test Browser pane.
Each new test file contains a test suite, New Test Suite 1, which contains a test case,

New Test Case 1. You can rename test suites and test cases in the browser. The figure
shows a test file that contains two test suites that each contain test cases.

Introduction to Test Manager

Results and Artifacts

4 [=] TestFile
4 Test Suite 1
|E] Simulation Test Case
|| Baseline Test Case
4 Test Suite 2

|| Equivalence Test Case

Add test suites and test cases to the test file hierarchy using the New menu. Use test
suites to group related test cases. For each test case, specify details such as the model
under test, the simulation outputs to capture, and parameter overrides to apply.

Run tests in the Test Manager, and view results in the Results and Artifacts pane. You
can run a test file, test suite, or individual test cases.

For baseline and equivalence test cases, you can specify tolerances for the simulation
outputs that determine pass or fail. For more information on setting tolerances, see
“Apply Tolerances to Test Criteria” on page 6-70.

Using Test Manager, from the New menu, you can create these types of test cases:

* Baseline — A baseline test is a type comparison test. For a baseline test, you first
generate a baseline set of simulation outputs as the basis for comparison. Running a
baseline test compares the outputs of the comparison simulation to the baseline. With
equivalence tests, you can specify tolerances that determine a range of values that
allow the test to pass. That is, the results are equivalent even if not the same. You can
set absolute, relative, leading, or lagging tolerances in the Baseline Criteria section
of the test case. See “Test Model Output Against a Baseline” on page 6-9.

* Equivalence — An equivalence test in Test Manager compares signal outputs from
two simulations. You can specify tolerances that help the test determine whether the
results are equivalent. Set tolerances in the Equivalence Criteria section of the test
case. See “Test Two Simulations for Equivalence”.

* Simulation — A simulation test checks that a simulation runs without errors,
including model assertions. See “Test a Simulation for Run-Time Errors” on page 6-
13.

5-3

5 Simulink Test Manager Introduction

* Real-Time Test — A baseline, equivalence, or simulation test that runs on the target
hardware. See “Test Models in Real Time” on page 8-2.

* Test Manager Generated Tests — Tests that you do not need to configure:

* Test File from Model, which generates a test file and uses signal builders and test
harnesses in the model as the basis for generating test cases. See “Generate Tests
from Model Elements” on page 6-16.

+ Test for Subsystem, which generates a test harness for the subsystem you select
and generates a test case to run on the test harness. See “Generate Tests for a
Subsystem” on page 6-18.

You can also have Test Manager generate test cases for you based on your model design
or for a specific subsystem to test a subsystem in isolation. See “Generate Tests from
Model Elements” on page 6-16 and “Generate Tests for a Subsystem” on page 6-18.

View Test Results

Tests can pass or fail. If all the criteria defined in a test case are satisfied, within the
defined tolerances, then a test passes. If any of the criteria are not satisfied, then the test
fails. After the test runs, you can see the results in the Results and Artifacts pane. Each
test result has a summary page that highlights the outcome of the test: passed, failed, or
incomplete. You can also see the simulation output in the results. You can further inspect
the signal data from the simulation output using the data inspector view. To view a result
in the data inspector view, select it.

Share Results

Once you have completed the test execution and analyzed the results, you can share the
test results with others or archive them. If you want to share the results to view later in
Test Manager, then you can export the results to a file. To archive the results in a
document, generate a report, which can include the test outcome, test summary, and
criteria used for test comparisons. See “Export Test Results and Generate Reports” on
page 7-9.

Compare Test Files

You can use the Compare command in the File section of the MATLAB toolstrip to
compare two test files. Comparing test files is useful for determining the differences

Introduction to Test Manager

between two similar test files. For example, you can see whether they contain the same
test cases and whether those test cases are configured identically.
From the File section of the MATLAB toolstrip, click Compare.

In the First file or folder box, enter the first test file that you want to compare. Test
files are in the .mldatx format.

3 Inthe Second file or folder box, enter the second test file that you want to compare.

For Comparison type, select Simulink Test File Comparison. Then click
Compare.

The figure shows an example of a comparison between two test files. The highlights
indicate where one file specifies information that the comparison file does not. For
example, newbaseline.mldatx includes a test suite that the other file does not
contain.

Comparison - newbaseline.mldatx vs. second test file.midat:

Left : H:\newbaseline.mldatx b Right : H:\second test file.mldat: b
= newbaseline = second test file
5- Mew Test Suite 1 = Mew Test Suite 1
i---I'\JewTest Case 1 =8 MNew Test Case 1
5- Simulation = Simulation
=8 Parameter Overrides ' ----- Parameter Overrides
- Parameter Set 1
= Simulation Qutputs 5. Simulation Cutputs
=% Signal 5et 1 =% Signal 5et 1
=8 Output Signals 5. Output Signals
Product:
L

= Bazeline Criteria - Baseline Criteria
b vdpbaseline.mat

+F Mew Test Suite 2

3-5

5 Simulink Test Manager Introduction

See Also

Related Examples

. “Test Model Output Against a Baseline” on page 6-9

. “Test Two Simulations for Equivalence”

. “Code Generation Verification Workflow with Simulink Test”

Test Manager Test Cases

* “Manage Test File Dependencies” on page 6-2

* “Test Model Output Against a Baseline” on page 6-9

* “Test a Simulation for Run-Time Errors” on page 6-13

* “Generate Tests from Model Elements” on page 6-16

* “Generate Tests for a Subsystem” on page 6-18

* “Synchronize Test Cases to Model Changes” on page 6-20

* “Specify Microsoft Excel File Format for Signal Data” on page 6-21
* “Use External Inputs in Test Cases” on page 6-29

* “Create Data Files to Use as Test Inputs” on page 6-31

* “Run Tests in Multiple Releases” on page 6-34

* “Examine Test Failures and Modify Baselines” on page 6-39
* “Automate Tests Programmatically” on page 6-45

* “Run Combinations of Tests Using Iterations” on page 6-52
* “Collect Coverage in Tests” on page 6-63

* “Run Tests Using Parallel Execution” on page 6-68

* “Apply Tolerances to Test Criteria” on page 6-70

* “Test Manager Limitations” on page 6-76

* “Test Sections” on page 6-78

* “Test Models Using Inputs Generated by Simulink Design Verifier” on page 6-88
* “Apply Custom Criteria to Test Cases” on page 6-93

* “Create, Store, and Open MATLAB Figures” on page 6-104
* “Test Models Using MATLAB Unit Test” on page 6-107

» “Filter Test Execution and Results” on page 6-117

6 Test Manager Test Cases

Manage Test File Dependencies

6-2

In this section...

“Package a Test File Using Simulink Projects” on page 6-2
“Find Test File Dependencies and Impact” on page 6-4

“Share a Test File with Dependencies” on page 6-8

A test file can be simple and contain only a few test cases. For such a test file, the file
dependencies for models, test requirements, input files, callbacks, and baseline data can
be manageable. When test files become large and complex, it is difficult to track and
manage file dependencies. You can use Simulink projects to help manage these
dependencies. Projects are especially helpful if you want to package and share a test file.

Package a Test File Using Simulink Projects

In the Test Browser, right-click the test file.
Select Simulink Project > Create Project from Test File.
Simulink Projects opens and identifies the file dependencies of the test file. In this

example, the test file contains a test case with a requirements link, an input file, and
a baseline file.

Manage Test File Dependencies

3
4

Results and Artifacts

&

1
X

« = TestFile
[T TestSui

[E] Test

New »
& Cpenin Tab

[Run Cirl+T
Collapse All

2 Synchronize

Simulink Project

-

Create Project from Test file

Show in Explarer

do

1=l

E|
+ Enabled

Convert to 3
X Close

Specify project name, and verify the list of selected file dependencies.

Click Create.

6-3

6 Test Manager Test Cases

6-4

Simulink Project - Mew Simulink Project
Project name:

Test Package

Project folder

C:\ » MATLAE » TestPackage
4

Files to include:

External dependencies:

) Test Package
BE‘ baselinel.mat
-# Ea baseline. mat
- [¥] B inputxdsx
-[¥] % sldemo_absbrake.sh
-[C] || slderno_absbrake.sh.bak

- R} Test File.midatx

+ More Options

[Createﬂ’ Cancel | | Help |

Find Test File Dependencies and Impact

If you have a test file saved in a Simulink project, then you can find the file dependencies.

1 Right-click the test file. Select Simulink Project > Find Dependencies.

Manage Test File Dependencies

Results and Artifacts

&

« = TestFile
- L= -
(3 Test -

[E] Te S

-
.

New

Openin Tab

Run

Collapse All
Synchronize
Simulink Project
Show in Explarer

Ctrl+T

Show Test file in Project

Find Dependem:ies{ttl

do
B
E]
u"

Enabled

Remove from Project

Convert to

X Close

Simulink Projects shows a graph of file dependencies.

6-5

6 Test Manager Test Cases

Simulink Project - Test Package
@ Project: Test Package B[N P3| —— '.’—‘p F A

i~ =] Files
[#] Shortcut Management File Type 4 # Dependency Type

paajEarchilub MAT-file (2)
Sirmulink Model (1)
SimulinkTest File (1)
Microsoft Excel Worksheet (1)

(1) External Input
(2] Baseling m——

(1) Systemn Under Test
H:l baselinel .mat

EH baseline2.mat

|44 Test File.mldatx

» [T]

il Labets g

m Classification
)‘| "] sldemo_absbrake.slx|

Results are shown for a dependency analysis started on December 21, 2015 10:39:19 AM

Completed: Analyzing dependencies

If you want to change a model or requirement, then you can find the impact that the
change could have on testing.

1 In the dependency graph, select the item that would want to assess the impact for.
2 In the Simulink Projects toolstrip, click Files > Files Impacted by Selection.

6-6

Manage Test File Dependencies

TS DEPENDEMNCY ANALYSIS -

W (B &
=)

Only Selected Files
All Dependencies of Selection
Files Impacted by Selection

Files Required by Selection

If you want to run a test file again, then you can right-click the test file in the graph and
select Run. The Test Manager opens the test file and runs the test cases contained in it.

4| Test File.mlidatx

Open

Fun
3

Show in Explorer

Remove from Project
Add Label

Remove Label

Extract Conflict Markers to File

Export k

6 Test Manager Test Cases

Share a Test File with Dependencies

You can easily share test files that are already saved in a Simulink project. If you send the
project folder, then it contains the file dependencies for the test file.

See Also

Related Examples
. “What Are Simulink Projects?” (Simulink)

6-8

Test Model Output Against a Baseline

Test Model Output Against a Baseline

To test the simulation output of a model against a defined baseline, use a baseline test
case. In this example, use the sldemo absbrake model to compare the simulation
output to a baseline captured from an earlier state of the model.

Create the Test Case

Open the sldemo _absbrake model.
To open the Test Manager from the model, select Analysis > Test Manager.

From the Test Manager toolstrip, click New to create a test file. Name and save the
test file.

The test file consists of a test suite that contains one baseline test case. They appear
in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.
5
Under System Under Test in the test case, click the Use current model button e
to load the sldemo absbrake model into the test case.
6 Torecord a baseline from the system under test, under Baseline Criteria, click
Capture.
7 In the Capture Baseline dialog box, for the file format, select Excel. Specify a
location to save the baseline to and click Create.
8 The baseline criteria file and the logged signals appear in the table. Set the Absolute
Tolerance of the Ww signal to 15.
.v. J_ r-ﬂ;.-__mat_hase.mat _ 0
| Ww 15 0.00% 0 0
| Vs 0 0.00% 0 0
+ 5d 0 0.00% 0 0
+ slp 0 0.00% 0 0

Tip To add or remove columns in the baseline criteria table, click the column selector
button .

6-9

matlab:open_system('sldemo_absbrake')
matlab:open_system('sldemo_absbrake')

6 Test Manager Test Cases

6-10

For more information about tolerances and criteria, see “Apply Tolerances to Test
Criteria” on page 6-70.

Run the Test Case and View Results

1

In the sldemo absbrake model, set the Desired relative slip constant block to
0.22.

In the Test Manager, select the Slip Baseline Test case in the Test Browser pane.
On the Test Manager toolstrip, click Run.

In the Results and Artifacts pane, the new test result appears at the top of the
table.

Expand the results until you see the baseline criteria result. Right-click the result and
select Expand All Under.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

To view the yout.Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout .Ww signal.

- [l=| Baseline Criteria Result
| slp
| yout.Sd
) yout. Vs

® yout.Ww

o 0 0 0 ©

The Comparison tab opens and shows the criteria comparisons for the yout .Ww
signal and the tolerance.

Test Model Output Against a Baseline

W yout\Ww (Baseline) B youtWw (Compare To) W Tolerance

1 2 3 4 5 -] T 8 2 10 1 12

W Difference M Tolerance

1 2 3 4 5 8 T 8 9 10 1 12

You can also view signal data from the simulation. Expand Sim Output and select
the signals you want to plot.

- | Sim Output (sldemo_absbrake

slp —
yout.Sd —
< yout'Vs —
V| yout Ww —

6-11

6 Test Manager Test Cases

The Visualize tab opens and plots the simulation output.

W youtWw B youtVs

60

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports” on page 7-9.

See Also

Related Examples

. “Apply Tolerances to Test Criteria” on page 6-70
. “Capture Baseline Criteria” on page 6-85

. “Run Tests in Multiple Releases” on page 6-34

6-12

Test a Simulation for Run-Time Errors

Test a Simulation for Run-Time Errors

In this example, use a simulation test case with the sldemo absbrake model to test for
simulation run-time errors.

Configure the Model

Configure the model to check if the stopping distance exceeds an upper bound.

Open the model sldemo absbrake.

2 Add the Check Static Upper Bound block from the Model Verification library to the
model.

3 Connect the Check Static Upper Bound block to the Sd signal.

Modeling an Anti-Lock Braking System (ABS)

ddemo_wheelpeed_absbrake
0.2 +_ I nput
Desired WheelSpeed |
relative 4.{ Rr - »{ Tire Torque !
sl tire torgue:
. cirl AN

Wheel Speed

1-D
S Fr |
mu-siip Weight ; Vehicle speed
friction curve E (angular)
Wehicle

o 1 .
speed 5 5d
Stopping distance
s; 1.0-u(1Y(u(2) + (u2)==0)"ep3
Relative Slip
-
Copyright 1990-2013 The M athWorks, Inc. > —
B
Check Static
Upper Bound

4 In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

6-13

matlab:open_system('sldemo_absbrake')
matlab:open_system('sldemo_absbrake')

6 Test Manager Test Cases

Create the Test Case

To open the Test Manager, from the model, select Analysis > Test Manager.
2 To create a test file, click New. Name and save the test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

3 Select New > Simulation Test.

Right-click the new simulation test case in the Test Browser pane, and select
Rename. Rename the test case to Upper Bound Test.

In the test case, under System Under Test, click the Use current model button i
to assign the sldemo_absbrake model to the test case.

Under Parameter Overrides, click Add to add a parameter set.

In the dialog box, click the Refresh button & to update the model parameter list.
Select the check box next to the workspace variable m. Click OK.
Double-click the Override Value and enter 55.

Im
gl
gl

[}

m

4
8]
T

m

4 |v| Parameter Set 1

¥ m |55 | base workspace

This value overrides the parameter value in the model when the simulation runs.

Note To restore the default value of a parameter, clear the value in the Override
Value column and press Enter.

Run the Test Case

1 In the Test Browser pane, select the Upper Bound Test case.

2 In the Test Manager toolstrip, click Run. The test results appear in the Results and
Artifacts pane.

6-14

See Also

View Test Results
1 Expand the test results, and double-click Upper Bound Test.

A new tab displays the outcome and results summary of the simulation test.

2 The result indicates a test failure. In this case, the stopping distance exceeded the
upper bound of 725 and triggered an assertion from the Check Static Upper Bound
block. The Errors section contains the assertion details.

» SUMMARY

MName Upper Bound Test
Outcome a

*ERRORS

Assertion detected in 'sldemo_absbrake/Check Static Upper Bound' at time 12.1928

See Also

More About
. “Run Tests in Multiple Releases” on page 6-34

6-15

6 Test Manager Test Cases

Generate Tests from Model Elements

Using the Test Manager, you can automate your tests by generating test cases from your
model. Test Manager can generate test cases based on Signal Builder blocks and Simulink
Test and Simulink Design Verifier test harnesses in your model.

Test Manager generates test cases for:
» The Signal Builder block at the top level of your model. Test cases are generated only

when there is a single Signal Builder at this level.

* The Signal Builder at the top level of each test harness. As with the top-level model,
test cases are generated only when there is a single Signal Builder block in the
harness.

* Each test harness in your model.

When you generate a test case, you specify the type of test case - baseline, equivalence,
or simulation. After you generate the test case, continue to configure the test in Test
Manager. For more information on configuring baseline, equivalence, and simulation
tests, see “Introduction to Test Manager” on page 5-2.

Generating the test creates a test file that contains a test suite with the test cases inside.

1 In the Test Manager, select New > Test File > Test File from Model.

2 In the dialog box, select the model that you want to generate test cases from. The
model must be on the MATLAB path.

3 Select the test type, and click Create.

See Also

More About

. “Synchronize Test Cases to Model Changes” on page 6-20
. “Test Sections” on page 6-78

. “Test Model Output Against a Baseline” on page 6-9

. “Test a Simulation for Run-Time Errors” on page 6-13

. “Test Two Simulations for Equivalence”

6-16

See Also

“Generate Tests for a Subsystem” on page 6-18

6-17

6 Test Manager Test Cases

Generate Tests for a Subsystem

6-18

Use the Test Manager to generate a test case for a subsystem. You can create a baseline,
equivalence, or simulation test case. Generating the test case:

* Creates a test harness for the subsystem. The test harness provides a separate
simulation environment from the main model.

* Simulates the main model and captures the subsystem's input data from the main
model simulation.

* For baseline tests, captures output data in a MAT-file or Microsoft® Excel® file. The
output is the test case baseline data.

* Adds the input and output files to the test case.

After you create the test case, configure the test case if you need additional options such
as coverage Or reports.

You add a generated test case for a subsystem to a test file. If you need a test file to add
the test case to, create one.

* Select the test file before you generate the test to add a test suite containing the test
case.

* Select a test suite before you generate the test case to add the test case to the test
suite. Or, select a test case in a test suite to add the test case to the test suite.

Generate the Subsystem Test Case

You can save the input data to a MAT-file or Excel file. When creating a baseline test,
selecting Excel saves the input and output data in the same file. For more information on
using Excel files in Test Manager, see “Specify Microsoft Excel File Format for Signal
Data” on page 6-21.

1 In the model that contains the subsystem that you want to create the test for, select

the subsystem.

2 In Test Manager, select the test file or test suite that you want to create the test case
in, and then select New > Test for Subsystem.

In the dialog box, click the Use currently selected subsystem button " to fill in
the Subsystem and Top model fields.

See Also

4 Select the test type—baseline, equivalence, or simulation—and specify the file format.
Depending on the test type and the file format, you can specify the location for your
inputs and your baseline outputs and the sheet name for Excel data.

6 Click Create. Test Manager adds a test harness to the subsystem and simulates the
model.

After simulation completes, the test case includes inputs and, for baselines, outputs.
* For equivalence tests, inputs are added to the test case in the Inputs section
under Simulation 1.
* For simulation tests, inputs are added under Inputs.
* For baseline tests, inputs are added under Inputs and outputs are added under
Baseline Criteria.
Finish configuring the harness and test case for your test scenario.
Save the model and the test case.
See Also
More About

“Test Sections” on page 6-78

“Test Model Output Against a Baseline” on page 6-9
“Test a Simulation for Run-Time Errors” on page 6-13
“Test Two Simulations for Equivalence”

“Generate Tests from Model Elements” on page 6-16

6-19

6 Test Manager Test Cases

Synchronize Test Cases to Model Changes

6-20

If you change your model under test by adding Signal Builder groups or test harnesses,
you can synchronize the test cases in a test file with your model. Also, if you remove
model components, you can disable or delete test cases in the Test Manager when you
synchronize.

Synchronizing your test cases generates one test for:

* Each new signal builder group in the Signal Builder block at the top level of your
model and the top level of each harness. Your model must have only one Signal Block
at those levels for Test Manager to generate test cases.

e Each new harness in the model.

1 In the Test Manager Test Browser pane, hover over the test file name whose test
cases you want to update.

Click the synchronization button next to the test file name.
Follow the prompts to specify:

* The type of test file to create for the new components
* Whether to disable or delete out-of-date components

Disabled tests appear in the list in italic.

See Also

More About

. “Generate Tests from Model Elements” on page 6-16

Specify Microsoft Excel File Format for Signal Data

Specify Microsoft Excel File Format for Signal Data

You can specify signal data in a Microsoft Excel file to use as input to your test case or as
baseline criteria (outputs). The Excel file includes time and signal data. To support a
range of models and configurations, you can specify signal data of most data types. For
exceptions, see “Limitations” on page 6-28. You can indicate whether signals are scalar,
multidimensional, or complex. You can optionally specify the data type, block path and
port index, units, interpolation type, and function-call execution times.

Basic Excel File Format

The figure shows the basic format of the Excel file. This example uses scalar signals and
the default data type, double, for all the signals.

[T S W I S R Y

A E C D
time signall signal2 signal3
] 1 2
2 2 4 8
4 3 6 12
6 4 8 16

When specifying time and signal data (and not function-call execution times), the time
column is the first column. Time values must increase in value, and every cell must
contain a value. Use the label time.

Include one column for each input signal in the first row. In each column, include the
signal data for each time point. Signal names are case-sensitive.

If dataset elements have different time vectors, the spreadsheet can have more than
one time column. In this case, the columns to the right of each time column, up to the
next time column, define signals along that time vector. The signal columns must have
the same number of rows as the time column they define values for. The figure shows
an example that has a time column for each time vector.

A B i€ D E F
L time mySignal(1,3) mySignal2 time mySignal3 mySignald
2 0 1 0.87 1.1 3
3 2 2 0.54 1.2 6 8
4 4 3 1.2 1.3 9 12
5 6 4 1.63
7] 8 5 1.8

6-21

6 Test Manager Test Cases

6-22

When you import data, you specify the mapping mode. To map using signal or block
names, add the block or signal names and qualifiers in the first row. If you are mapping
using block path and name, also specify them in the optional rows (see “Block Path and
Port Index” on page 6-24). If you are mapping using port numbers, signal columns map
to the model ports in order during import, ignoring the block or signal names.

Input and Output Data

You can save inputs and outputs in the same Excel file in the same sheet. Specify whether
the signals are for inputs or outputs in one of the optional rows, using Source: Input or
Source:Qutput as the label. Keep all the inputs together and all the outputs together.

A B C D E F

i time Datal Data2 time outl out2

2 Source:lnput Source:lnput Source:Qutput Source:Output
3 1 2 0.23 1 2 0.23
4 2 3 1.23 2 3 1.23
5 3 4 2.23 3 4 2.23
& 4 5 3.23 4 5 3.23
7 5 o 4.23 5 o 4.23
8 o 7 5.23 o 7 5.23

To import the file as input data, use the Inputs section of the test case, described in “Use
External Inputs in Test Cases” on page 6-29. To use the Excel file as expected outputs,
select it to add as baseline data, in the Baseline Criteria section of the test case,
described in “Baseline Criteria” on page 6-85.

When you capture inputs and expected outputs in Test Manager, you can save inputs and
outputs to the same Excel file. Both sets of data are saved to the same sheet unless you
specify a different sheet. Saving the inputs or expected outputs adds the file to the test.
See “Capture Baseline Criteria” on page 6-85.

Simulation for Equivalence Tests

When you perform equivalence tests in Test Manager, you compare the results of two
simulations. If your Excel input file is for an equivalence test, you can specify the inputs
for each simulation. Specify the simulation in one of the optional rows, using
Simulation:1or Simulation: 2 as the label. Keep the inputs for each simulation
together.

Specify Microsoft Excel File Format for Signal Data

signall signal2 time signall signal2
2 |Simulation: 1 Simulation: 2
3 a 2 1.7 a 4 2.3
4 1 3 4 1] 3
3 2 4 7.3 2 3 9

Scalar, Multidimensional, Complex, and Bus Signals

In addition to scalar signal names, you can indicate multidimensional, complex, and bus
signals, or a combination of these. The figure shows some examples.

A B C D E
(@ time signall{1,3) signal2(real) signal3(3) (imag) mybus.x
2 0 1 2 1.1 4
2 2 2 4 1.2 8
4 4 3 6 1.2 12
5 6 4 8 1.4 16

Specify block paths, and optionally, port index in one of the optional rows. See “Block
Path and Port Index” on page 6-24.

Base Name

Names are case-sensitive.

Multidimensional Signals

Use parentheses with the signal dimension after the signal name. For example:
* mySignal(1l,3)

Dimensions on the signal that you do not specify default to zeros of the same data type
and complexity as the dimensions that you specify.

Complex Signals

For complex signals, use (real) or (imag) with the signal name. For example:

* mySignal (real)

6-23

6 Test Manager Test Cases

+ mySignal (imag)
* mySignal(1,3) (imag)

If you do not specify a real counterpart to an imaginary number, the real value defaults to
Z€eros.

Bus Signals

Specify bus signals in the form signalname.busElement.nestedElement for as many
nested elements as the bus has. For example:

* myBusSignal.x
* busSignal2.x.z

Suppose the inport block myBus is a bus object with this structure:

hd E Base Workspace
v = BusObject
- a
v = x(BusObject3)
w
= BusObject3

In this case, specify the signal as myBus.a.w.

The figure shows an example of specifying bus signals with a bus data type (see “Data
Type” on page 6-25). The BusObj data type also applies to the columns to the right
because the base name for these signals is the same.

A B C D
L time myBus.x myBus.x.y myBus.xX.y.Z
2 Bus: BusObj
3 0 1 1.1
4 0.2 3 8 1.2
3 0.4 5 12 1.3
B 0.6 7 16 1.4

Block Path and Port Index

If you want to specify the signal using the block path, enter it in one of the optional rows
in the form BlockPath: path to block. When you specify a block path, you can also

6-24

Specify Microsoft Excel File Format for Signal Data

specify the block port index. The default port index is 1. Enter the port index in the row
following the block path in the form PortIndex: port number. For example:

* BlockPath: mymodel/myblock
* PortIndex: 2

A B
1
BlockPath:
2 myModel/myblock
3 Portindex: 2
4] 1
5 2 2

Data Type, Unit, Interpolation, and Block Path/Port Index

In the optional rows between the signal name and the time and signal data, you can
include any combination of information about the signal:

* Data type

* Units

* Interpolation

* Block path and port index (see “Block Path and Port Index” on page 6-24)

Data Type
Enter data types in the row after the signal name. The default data type is double.

You can mix data types in the same row, but you must use the same data type for all
columns of a multidimensional or complex signal.

You can leave the columns to the right of the data type declaration empty if that data type
applies to the signal data in those columns. For example, here the data type int16
applies to columns B and C because they are dimensions of the same signal.

6-25

6 Test Manager Test Cases

6-26

L time intsignal(1l) intsignal{2) enumSignal
2 Type: intle Enum: color
3 o 1 2 blue

4 0.2 2 4 green

5 0.4 3 6 yellow

Built-In MATLAB Data Types

Specify built-in MATLAB data types supported in Simulink in the form Type: data type.
See “Data Types Supported by Simulink” (Simulink). For example:

* Type: intl6
* Type: uint32

Enumerations
Specify an enumeration data type in the form Enum: class. For example:
* Enum: school

The data in the cells correspond to enumerated values. For example:

A E C
L time: signall signal2
2 Enum: color
3 o 1 blue
4 2 2 green
5 4 3 yellow
B & 4 red

Enum data type dimensions that do not have data default to the default enumeration
value.

Fixed Point

Indicate a fixed-point data type using the prefix Fixdt :, followed by the data type in one
of these forms:

* A fixdt constructor, for example, Fixdt: fixdt(1,16).

Specify Microsoft Excel File Format for Signal Data

* A unique data type name string, for example, Fixdt: sfix16 B7. To learn about
specifying data type names, see “Fixed-Point Data Type and Scaling Notation” (Fixed-
Point Designer).

* Anumerictype object in the base workspace, for example, Fixdt: mytype.
Bus

Specify the bus object in the form Bus: bus object with a bus signal. For example:
* Bus: BusObjectl

To specify a bus signal, see “Bus Signals” on page 6-24.

Alias

Specify an alias data type in the form Alias: alias type. To learn about alias data
types, see Simulink.AliasType.

Units

Optionally, include a row for units. Specify units in the form Unit: units. You can
specify units and physical quantity. For example:

 Unit: ¢

* Unit: kg@mass

Interpolation

Optionally, include a row for interpolation. The default is linear. Specify interpolation as

Interp: zohorInterp: linear.

Function-Call Execution Times

If the model contains control signals for function-call subsystems, add columns for each
one before the first time column. Enter the control signal name in the column heading.
Enter the points of time when you want to execute the function call in the column.

Function-call execution times that you specify are independent of the times in the time
column. The figure shows how to format two function-call blocks that execute at various
times. The time and signal data and data type information are independent of the
function-call information.

6-27

6 Test Manager Test Cases

1

2 | Type: intl6

3 | 0.1 0 0 1.1 6
4 | 0.1 2 1 1.6 7
3 | 0.8 4 2 2.1 8
6 | 1.3 3 2.6 9
7 | a 3.1 10
Limitations

Arrays of buses as a data type are not supported.

See Also

sltest.testmanager.BaselineCriteria | sltest.testmanager.TestInput
More About

. “Use External Inputs in Test Cases” on page 6-29

. “Baseline Criteria” on page 6-85

6-28

Use External Inputs in Test Cases

Use External Inputs in Test Cases

In this section...
“Add a MAT-File as an External Input” on page 6-29
“Add Microsoft Excel File as Input” on page 6-29

You can use external model inputs from MAT-files or Microsoft Excel files in a test case.
When you add the file, you can select one of these mapping modes to specify the model
element to map to:

* The names of the inport block the signal data corresponds to

* The full block path name, that is, in the form system/block

* The name of the signal associated with the inport block

* Port number, that is, sequential port numbers of the inport blocks, starting at 1

You can add multiple external input files to a test case. After you add the files, select the
one you want to use in the test case from the External Inputs table. If you are using test
iterations, you can assign one input file to each iteration.

For more information about how Simulink handles inport mapping, see “Map Root Inport
Signal Data” (Simulink).

Add a MAT-File as an External Input

1 In the test case, expand the Inputs section and click Add.

2 Browse to the MAT-file and click Add.

3 Under Input Mapping, choose a mapping mode.

4 Click Map Inputs. The Mapping Status table shows the port and signal mapping.
For information about troubleshooting the mapping status, see “Understand Mapping
Results” (Simulink).

5 Click Add.

Add Microsoft Excel File as Input

You can import Microsoft Excel spreadsheets to use as inputs. You can import multiple
sheets at once and specify a range of data. Selecting sheets and specifying ranges is

6-29

6 Test Manager Test Cases

6-30

useful when each sheet contains a different data set or the same file contains input data
and expected outputs.

For information about the Excel file format, see “Specify Microsoft Excel File Format for
Signal Data” on page 6-21.

In the test case, expand the Inputs section and click Add.

Browse to your Microsoft Excel file and click Add.

Select each sheet that contains input data. You can specify a range of data.

A W N -

If you want to use each sheet to create an input set in the table, select Create
scenarios from each sheet.

Under Input Mapping, select a mapping mode.

6 Click Map Inputs. The Mapping Status table shows the port and signal mapping.
For more information about troubleshooting the mapping, see “Understand Mapping
Results” (Simulink).

7 Click Add.

See Also

sltest.testmanager.TestInput

More About

. “Map Signal Data to Root Inports” (Simulink)

. “Map Root Inport Signal Data” (Simulink)

. “Specify Microsoft Excel File Format for Signal Data” on page 6-21

Create Data Files to Use as Test Inputs

Create Data Files to Use as Test Inputs

You can use Test Manager to create MAT-file and Microsoft Excel data files to use as
inputs to test cases. You generate a template that contains the signal names and the times
and then enter the data.

Creating a data file also adds the file to the list of available input files for the test case.
After you add input data, you can then select the file to use in your test case.

You can create files for input data only for tests that run in the current release. To select
the release, in the test case, use the Select releases for simulation list.

You can edit input files. After you create the template, select the file from the list of input
files and click Edit. MAT-files open in the signal editor. Excel files open in Excel.

Selecting the Add an iteration that runs this input check box adds an iteration to the
test case under Table Iterations and assigns the input file to it. After you create the
input file, continue to specify the iteration. For more information on iterations, see “Run
Combinations of Tests Using Iterations” on page 6-52.

Create a Microsoft Excel File for Input Data

Creating a Microsoft Excel file for input data adds the signal names from the model and
data type information for each signal to the spreadsheet, along with the times, based on
the inport blocks in the model. Selecting the Add an iteration that runs this input
button adds a sheet for the iteration.

To learn about the Excel file format, see “Specify Microsoft Excel File Format for Signal
Data” on page 6-21.

1

2
3
4

In the test case, under System Under Test, specify the model whose input data you
want to create an Excel file for.

In the Inputs section of the test case, click Create.

In the dialog box, set the file format to Excel. Specify the location for the file.

Click Create.

The Excel file opens. It includes time and signal columns based on the input signals
for the test case. If you used the same file to capture your baselines to, the outputs
and inputs both appear in the Excel file in the same sheet.

In each column, add the time and signal values.

6-31

6 Test Manager Test Cases

6 Save the Excel file.

Create a MAT-File for Input Data

1 In the test case, under System Under Test, specify the model whose input data you
want to create a MAT-file for.

2 In the Inputs section of the test case, click Create.

3 In the dialog box, set the file format to MAT- file. Specify the location for the MAT-
file and click Create.

The signal editor opens.

4 In the Scenarios and Signals pane of the signal editor, expand the data node. Then
select the signal whose data you want to add.

5 Specify the signal data. Select the data type from the list, and enter the time and
signal data for the signal.

4|

SIGNAL EDITOR L 2
n Fi= ur Move Up 25
'{,I:' L % T =ogus Function Call 3= [cC N |
i &Move Down
New Open Save Scenario Signal = Ground @ Defaults Duplicate:) IE' rm Data
- - - [l Detete ~ Cursors¥
FILE | INSERT | ADJUST | zoom & Pan | MEasuRe
SCENARL... | PLOT
o inpDS.In1
e inpDS .
= In1 v |
= In2

-1

- inpDS&.In1

|= | [= | |4, | | boolean

0 false
10 false

6 To update your signal data, click Apply.
7 After adding the signal data, click Save.

6-32

See Also

See Also

More About

. “Select Releases for Testing” on page 6-78

. “Specify Microsoft Excel File Format for Signal Data” on page 6-21
. “Use External Inputs in Test Cases” on page 6-29

. “Inputs” on page 6-83

6-33

6 Test Manager Test Cases

Run Tests in Multiple Releases

6-34

If you have more than one release of MATLAB installed, you can run tests in multiple
releases. This option lets you run tests in releases that do not have Simulink Test, starting
with R2011b.

While you can run test cases on models in previous releases, the release you run the test
in must support the features of the test. If, for example, your test involves test harnesses
or test sequences, the release must support those features for the test to run.

Before you can create tests that use additional releases, add them to your list of available
releases using Test Manager preferences. See “Add Releases Using Test Manager
Preferences” on page 6-35.

Considerations for Testing in Multiple Releases
Testing Models in Previous or Later Releases

Your model or test harness must be compatible with the MATLAB version running your
test.

+ Ifyou have a model created in a newer version of MATLAB, to test the model in a
previous version of MATLAB, export the model to a previous version and simulate the
exported model with the previous MATLAB version. For more information, see the
information on exporting a model in “Save a Model” (Simulink).

» To test a model in a more recent version of MATLAB, consider using the Upgrade
Advisor to upgrade your model for the more recent release. For more information, see
“Consult the Upgrade Advisor” (Simulink).

Test Case Compatibility with Previous Releases

When performing testing in multiple releases, the MATLAB version must support the
features of your test case. Previous MATLAB versions do not support test case features
unavailable in that release. For example:

» Test harnesses are supported for R2015a and later.

* The Test Sequence block is supported for R2015a and later.

+ verify() statements are supported for R2016b and later.

Run Tests in Multiple Releases

Test Case Limitations with Multiple Release Testing

Certain features are not supported for multiple release testing:

Parallel test execution

Running test cases with the MATLAB Unit Test framework

Real-time tests

Input data defined in an external Excel document

Coverage collection in the Test Manager

Generating additional tests using Simulink Design Verifier to increase coverage
Including custom figures from test case callbacks

Add Releases Using Test Manager Preferences

Use a Test Manager preference to add to the list of release to run tests in. You can delete
a release that you added to the list. You cannot delete the release from which you are
running Test Manager.

In the Test Manager toolstrip, click Preferences.

In the Preferences dialog box, click Release. The Release pane lists the release you
are running Test Manager from.

In the Release pane, click Add.
Browse to the location of the release you want to add and click OK.

Run Baseline Tests in Multiple Releases

When you run a baseline test with Test Manager set up for multiple releases, you can:

Create the baseline in the release you want to see the results in, for example, to try
different parameters and apply tolerances.

Create the baseline in one release and run it in another release. Using this approach
you can, for example, know whether a newer release produces the same simulation
outputs as an earlier release.

Create the baseline.

1

Make sure that the release has been added to your Test Manager preferences.

6-35

6 Test Manager Test Cases

6-36

2 Create a test file, if necessary, and add a baseline test case to it.

w

In the test case, from the Select release for simulation list, select the releases you
want to run the test case in.

Under System Under Test, enter the name of the model you want to test.
Set up the rest of the test.
Capture the baseline. Under Baseline Criteria, click Capture.

N o b

Select the release you want to use for the baseline simulation. Specify the file format
and save and name the baseline.

For more information about capturing baselines, see “Capture Baseline Criteria” on page
6-85.

After you create the baseline, you can run the test in a release available in the Test
Manager. Each release you select generates a set of results.

1 In the test case, set Select releases for simulation to the releases you want to use
to compare against your baseline. For example, select only the release for which you
created the baseline to perform a baseline comparison against the same release.

Specify the test options.
3 From the toolstrip, click Run.
For each release that you select when you run the test case, pass-fail results appear

in the Results and Artifacts pane. For results from a release other than the one you
are running Test Manager from, the release number appears in the name.

Results and Artifacts

v Results-14a: 2017-May-22 151439 1@
» Results: 2017-May-22 15:14:39 1®

Run Equivalence Tests in Multiple Releases

When you run an equivalence test, you compare two simulations from the same release to
see if differences in the simulations are within the specified tolerance.

Run Tests in Multiple Releases

1 Make sure that the release has been added to your Test Manager preferences.
Create a test file, if necessary, and add an equivalence test case to it.

3 In the test case, from the Select release for simulation list, select the releases you
want to run the test case in.

4 Under System Under Test, enter the model you want to test.
Set the values under Simulation 1 and Simulation 2 to use as the basis for testing.

6 To set tolerances for the logged signals, under Equivalence Criteria, click Capture.
Select the release you want to use for capturing the signals, and click OK. Clicking
Capture copies the list of the signals being logged in Simulation 1. Then set the
tolerances as desired.

7 In the toolstrip, click Run.

The test runs for each release you selected, running the two simulations in the same
release and comparing the results for equivalence. For each release that you selected
when you ran the test case, pass-fail results appear in the Results and Artifacts
pane. For results from a release other than the one you are running Test Manager
from, the release number appears in the name.

Resulfs and Ariifacts

» Results-14a: 2017-May-22 15:14:39 1@
» Results: 2017-May-22 15:14:39 1@

Run Simulation Tests in Multiple Releases

Running a simulation test simulates the model in each release you select using the
criteria you specify in the test case.

1 Make sure that the release has been added to your Test Manager preferences.
2 Create a test file, if necessary, and add a simulation test case template to it.

3 In the test case, from the Select release for simulation list, select the releases you
want to run the test case in.

4 Under System Under Test, enter the model you want to test.

6-37

6 Test Manager Test Cases

6-38

5 Under Simulation Outputs, select the signals to log.
In the toolstrip, click Run.
The test runs, simulating for each release you selected. For each release, pass-fail
results appear in the Results and Artifacts pane. For results from a release other

than the one you are running Test Manager from, the release number appears in the
name.

Results and Ariifacts

» Results-14a: 2017-May-22 15:14:38 1@

» Results: 2017-May-22 15:14:39 1@
See Also
sltest.testmanager.getpref | sltest.testmanager.setpref
More About
. “Select Releases for Testing” on page 6-78

Examine Test Failures and Modify Baselines

Examine Test Failures and Modify Baselines

After you run a baseline test in the Test Manager, you can update the baseline. For
example:

If you changed your model, you can use the new simulation output as the baseline. You
can examine the failures that occurred because of the differences and update the
baseline with part or all of the new output. See “Examine Test Failure Signals and
Update Baseline Test” on page 6-39.

If your test plan changed and you expect different outputs, you can manually edit the
time points. See “Manually Update Signal Data in a Baseline” on page 6-42.

Examine Test Failure Signals and Update Baseline Test

Suppose that you run a test against a baseline and the result does not match the baseline,
causing test failure. It is possible that the newer simulation better represents your
desired test results or that some of the points of failure are your preferred results. You
can examine the signal and failures in the data inspector view in Test Manager and decide
whether you want to update the baseline or sections of the baseline.

Suppose that your model uses a new solver. When you run the test case, the results do not
match, causing the test to fail.

Open the test file that contains the baseline test case you want to run.
Select the test case and run it.

If the test fails, in the Results and Artifacts pane, expand the Baseline Criteria.
Select a signal that failed that you want to examine.

When you select the signal, the data inspector view opens. The top graph is the
baseline simulation signal overly. The bottom is the difference between those signals
and the tolerance. You can adjust tolerances in the pane in the lower-left corner of
the Test Manager. This example shows an absolute tolerance of . 2.

6-39

6 Test Manager Test Cases

Results and Arfifacis

- Results: 2017-Jun-02 10
~ [E] New Test Case 1
~ [zl Baseline Criteria
® Sum:1

w1

» il Sim Qutput (vdp

Name
Status

Absolute Tolerance

Relative Tolerance
Leading Tolerance
Lagging Tolerance
Block Path

Port

Interp Method

Sync Method

Max Diff

Baseline: Units
Baseline: Sample Time
Baseline: Data Type
Compare To: Units

-45:20

Result

- normal)

Sum:1
(]

0.2

0.00%

0

0

vdp/Sum
1

linear
union
1.574029211040108

Continuous
double

[, startPage %

0.5

[E| NewTestCase1 x [#§ Comparisen x

W Sum:1 (Baseline) m Sum:1(Compare To) M Tolerance

1]

1 2 3 4 5

M Difference M Tolerance

Yo

4 To examine each failure, in the toolstrip, click Next Failure or Previous Failure.
Each contiguous set of failed signal comparison points makes up one region. Data

cursors show the bounds of each region.

6-40

Examine Test Failures and Modify Baselines

M Sum:1 (Baseline) W Sum:1(Co

10
- 0.8
/\ | US
|
/l[os
- -16
1.8
-1.9
- 20

a 1 3 4

M Difference M Tolerance

NIl

0.20 0.20
z -0.02 0.04 P
-0.20 020 |

a 1 3 4

You can update the baseline data to use newer simulation results using the Update

Baseline menu.

* To update the entire signal, select Update Baseline Signal.

6-41

6 Test Manager Test Cases

6-42

» To update only the data in the failure region, select Update Selected Signal
Region.

* To replace all the signal data in the baseline with the new data, select Update All
Signals.

Manually Update Signal Data in a Baseline

If your model changes such that you expect a different simulation output, you can update
all or part of the baseline signal data. If the baseline is a MAT-ile, you can edit the data in
the signal editor. Microsoft Excel files open in Excel.

To update signal data in a MAT-file baseline:

Open the test file that contains the baseline you want to edit.
Select the test case.

Under Baseline Criteria, select the baseline whose signal data you want to edit.
Click Edit.

The signal editor opens. In the Scenarios and Signals pane, expand the data node.
5 Select the check box next to the signal whose data you want to edit.

Examine Test Failures and Modify Baselines

. [

=
=

SCEMARIOS AND SIGNALS
data

x1

PLOT

L]

2
1
0
1
2
0 1 2 4 5 8
data.x1
= =)
TIME DATA
0 2 -

0.00010047545726038319
0.000602852743562209
0.0031147391750718785
0.015674171332619776
0.07847133212035926
0.28439872563113655
0.5406984944717497
0.8787845982919935
1.2787845982019936
1.6787845982019936
2.0787845982919935
2.A4T8T8450982019934
2.8787845082019933

1.9999999899056968
1.9999996367875772
1.999990328555064
1.9997581309018742
1.9943001777229783
1.9379231096671776
1.815487704689629
1.5990144512505253
1.2687416768223343
0.8232220579660026
0.17250610732386962
-0.7844010202322268
-1.7105641481146283

6-43

6 Test Manager Test Cases

Tip To see the time and data for points, display a data cursor and drag it along the
signal.

Edit the signal data in the table, and then click Apply.
To update the baseline with the new expected output data, click Save.

See Also

More About

. “Work with Basic Signal Data” (Simulink)
. “Inspect Simulation Data” (Simulink)
. “Test Model Output Against a Baseline” on page 6-9

6-44

Automate Tests Programmatically

Automate Tests Programmatically

In this section...

“List of Functions and Classes” on page 6-45

“Create and Run a Baseline Test Case” on page 6-47
“Create and Run an Equivalence Test Case” on page 6-48
“Run a Test Case and Collect Coverage” on page 6-49
“Create and Run Test Case Iterations” on page 6-50

List of Functions and Classes

Function Description
sltest.testmanager.view Open the Simulink Test Manager
sltest.testmanager.createTestsFromModel |Generate test cases from a model
sltest.import.sldvData Create test cases from Simulink
Design Verifier results
sltest.testmanager. load Load a test file in the Simulink Test
Manager
sltest.testmanager. run Run test in the Simulink Test
Manager
sltest.testmanager.copyTests Copy test cases or test suites to
another location
sltest.testmanager.moveTests Move test cases or test suites to a
new location
sltest.testmanager. report Generate report of test results
sltest.testmanager.clear Clear test files from the Simulink
Test Manager
sltest.testmanager.close Close the Simulink Test Manager
sltest.testmanager.clearResults Clear results from the Simulink Test
Manager
sltest.testmanager.importResults Import Test Manager results file

6-45

6 Test Manager Test Cases

6-46

Function Description

sltest.testmanager.exportResults Export results set from Test
Manager

sltest.testmanager.getResultSets Returns result set objects in Test
Manager

Class Description

sltest.testmanager.TestFile Create or modify test file

sltest.testmanager.TestSuite Create or modify test suite

sltest.testmanager.TestCase Create or modify test case

sltest.testmanager.TestIteration |Create or modify test iteration

sltest.testmanager.ParameterSet Add or modify parameter set

sltest.testmanager.ParameterOverr |Add or modify parameter override

ide

sltest.testmanager.TestInput Add or modify test input

sltest.testmanager.CoverageSettin |Modify coverage settings

gs

sltest.testmanager.BaselineCriter |Add or modify baseline criteria

ia

sltest.testmanager.EquivalenceCri |Add or modify equivalence criteria

teria

sltest.testmanager.SignalCriteria |Add or modify signal criteria

sltest.testmanager.Options View or set test file options

sltest.testmanager.ResultSet Access results set data

sltest.testmanager.TestFileResult |Access test file results data

sltest.testmanager.TestSuiteResul |Access test suite results data

t

sltest.testmanager.TestCaseResult |Access test case results data

sltest.testmanager.TestIterationR |Access test iteration result data

esult

sltest.testmanager.TestResultRepo |Customize generated results report

rt

Automate Tests Programmatically

Create and Run a Baseline Test Case

This example shows how to use sltest.testmanager functions, classes, and methods
to automate tests and generate reports. You can create a test case, edit the test case
criteria, run the test case, and generate results reports programmatically. The example
compares the simulation output of the model to a baseline.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'baseline', 'Baseline API Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc, '"Model', 'sldemo absbrake');

% Capture the baseline criteria
baseline = captureBaselineCriteria(tc, 'baseline API.mat',true);

% Test a new model parameter by overriding it in the test case
% parameter set

ps = addParameterSet(tc, 'Name', 'API Parameter Set');

po = addParameterOverride(ps, 'm',55);

% Set the baseline criteria tolerance for one signal
sc = getSignalCriteria(baseline);
sc(1l).AbsTol = 9;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

% Generate a report from the results data

filePath = 'test report.pdf’';

sltest.testmanager.report(ResultsObj,filePath, ...
"Author', 'Test Engineer',...
"IncludeSimulationSignalPlots', true, ...
"IncludeComparisonSignalPlots',true);

6-47

6 Test Manager Test Cases

6-48

The test case fails because only one of the signal comparisons between the simulation
output and the baseline criteria is within tolerance. The results report is a PDF and opens

when it is completed. For more report generation settings, see the
sltest.testmanager. report function reference page.

Create and Run an Equivalence Test Case

This example compares signal data between two simulations to test for equivalence.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'equivalence', 'Equivalence Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case

% for Simulation 1 and Simulation 2

setProperty(tc, '"Model', 'sldemo absbrake', 'SimulationIndex',1);
setProperty(tc, '"Model', 'sldemo absbrake', 'SimulationIndex',2);

% Add a parameter override to Simulation 1 and 2

psl = addParameterSet(tc, 'Name', 'Parameter Set 1', 'SimulationIndex',1);
pol = addParameterOverride(psl, 'Rr',1.20);
ps2 = addParameterSet(tc, 'Name', 'Parameter Set 2','SimulationIndex',2);
po2 = addParameterOverride(ps2, 'Rr',1.24);

% Capture equivalence criteria
eq = captureEquivalenceCriteria(tc);

% Set the equivalence criteria tolerance for one signal
sc = getSignalCriteria(eq);
sc(1).AbsTol = 2.2;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

Automate Tests Programmatically

In the Equivalence Criteria Result section of the Test Manager results, the yout . Ww
signal passes because of the tolerance value. The other signal comparisons do not pass,
and the overall test case fails.

Run a Test Case and Collect Coverage

This example shows how to use a simulation test case to collect coverage results. To
collect coverage, you need a Simulink Coverage license.

% C
tf
ts
tc

eate the test file, test suite, and test case structure
sltest.testmanager.TestFile('API Test File');
createTestSuite(tf, 'API Test Suite');
createTestCase(ts, 'simulation', 'Coverage Test Case');

[L |

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc, 'Model', 'sldemo autotrans');

% Turn on coverage settings at test-file level
cov = getCoverageSettings(tf);
cov.RecordCoverage = true;

% Enable MCDC and signal range coverage metrics
cov.MetricSettings = 'mr';

% Run the test case and return an object with results data
ro = run(tf);

% Get the coverage results

tfr = getTestFileResults(ro);
tsr = getTestSuiteResults(tfr);
tcs = getTestCaseResults(tsr);

cr = getCoverageResults(tcs);

% Open the Test Manager to view results
sltest.testmanager.view;

6-49

6 Test Manager Test Cases

6-50

In the Results and Artifacts pane of the Test Manager, you can view the coverage
results in the test case result.

Create and Run Test Case Iterations

This example shows how to create test iterations. You can create table iterations
programmatically that appear in the Iterations section of a test case. The example
creates a simulation test case and assigns a Signal Builder group for each iteration.

% C
tf
ts
tc

eate test file, test suite, and test case structure
sltest.testmanager.TestFile('Iterations Test File');
getTestSuites(tf);

createTestCase(ts, 'simulation', 'Simulation Iterations');

nnn -

% Specify model as system under test
setProperty(tc, 'Model', 'sldemo autotrans');

% Set up table iteration

% Create iteration object

testItrl = sltestiteration;

% Set iteration settings

setTestParam(testItrl, 'SignalBuilderGroup', 'Passing Maneuver');
% Add the iteration to test case

addIteration(tc,testItrl);

% Set up another table iteration

% Create iteration object

testItr2 = sltestiteration;

% Set iteration settings

setTestParam(testItr2, 'SignalBuilderGroup', 'Coasting');
% Add the iteration to test case
addIteration(tc,testItr2);

% Run test case that contains iterations
results = run(tc);

% Get iteration results

See Also

tcResults = getTestCaseResults(results);
iterResults = getIterationResults(tcResults);

See Also

sltest.testmanager. report

6-51

6 Test Manager Test Cases

Run Combinations of Tests Using Iterations

6-52

In this section...

“Create Table Iterations” on page 6-52
“Create Scripted Iterations” on page 6-55
“Capture Baseline Data from Iterations” on page 6-58

“Sweep Through a Set of Parameters” on page 6-61

Test Manager iterations help you create test cases for multiple sets of data. Use iterations
to test multiple combinations of parameter sets, external inputs, configuration sets, Signal
Builder groups, or baselines. The Iterations section of a test case enables you to have
many iterations in one centralized location.

There are two ways to set up iterations: tabled and scripted. You can use one or both
ways to create iterations in a test case. If you use iterations in a test case where you have
specified coverage settings, then the same coverage settings are applied to all iterations
in the test case.

Create Table Iterations

The Table Iterations section is a quick way to add iterations. The table makes the set of
iterations easy to view at a glance.

1 Add parameter sets, external inputs, configuration sets, Signal Builder groups, or
baselines to a test case if they are applicable to your tests.
To add an iteration to the table manually, click Add.
By default, the Parameter Set and External Input columns are visible in the table.
To add or remove columns, click the * button, and select a column from the list.

4 In the iteration row, select the column cell you want to use to change the test setting.
For example, if you want to have an iteration with a parameter set, click the cell
below Parameter Set, and select the parameter set from the list.

Run Combinations of Tests Using Iterations

’ +
+ lteration None None .

None [Defaui [+]

s

Auto Generate [J-s RN W= S0

Autogenerated iteration combinations are ordered in lockstep. Lockstep means that each
iteration is formed using sequential pairings of test case settings. For example, the model
sldemo_autotrans has a Signal Builder block with four signal groups, labeled in the
figure as S1, S2, S3, and S4. If you use this model in a test case with three parameter
sets, labeled as P1, P2, and P3, then the Test Manager generates three iterations.
Generated iterations are limited to the minimum number settings between Signal Builder
groups and parameter sets, which is three. Each iteration, labeled as I1, 12, and I3,
contains one Signal Builder group with the corresponding parameter set. The Signal
Builder group and parameter set are matched in the order that they are listed in the
Signal Builder block or parameter set section, respectively.

(4] Signal Builder (sldemo_autotrans/ManeuversGUI) [fo-@ @
File Edit Group Signal Axes Help ~
FH| PR o |~ TIEFRCEE[> 0 o= E >

Active Group: | | passing Maneuver =z @ (=] =]

GH|%BEB|oo|—Ta

” Active Group:

]Passing Maneuver [~
<1

—
Hard braking == g

Coasting

|] | | | | |

Th

» ~vPARAMETER OVERRIDES

ELEMENT R

» | Parameter Set 1

m
» | Parameter Set2 @
I

» |Parameter Set3

» vITERATIONS

0 v TABLE ITERATIONS

PARAMETER SET + 7| NavE DESCRIPTION REQUIREMENTS SIGNAL BUILDER GROUP

Paramatar Qat 4 Iteration1 None |14 None Passing Maneuver

6-53

6 Test Manager Test Cases

6-54

In the table iterations, Default [None] means that the iteration does not change the
test case setting. The test iteration setting is the same as what is specified in the test
case.

View Table Iterations

To see a list of iterations from the Table Iterations section, click Show Iterations. The
list includes table iterations and scripted iterations.

Generate Table Iterations

If you have test case settings that you want to transform into test iterations, then you can
use the Auto Generate button. You can select the test case sections to use to generate
iterations. If you select multiple sections, then the Test Manager combines iterations, and
lockstep ordering applies.

When you autogenerate iterations, you can specify the naming rule for each iteration.
Click Auto Generate and select the settings to use as the basis for the iterations. You can
then use a rule to name the iterations to help to identify them. In the Iteration naming
rule box, enter the rule using:

* The name of each setting you want to use in the name, with spaces removed

* An underscore or space to separate each setting

For example, if you want to include the name of the parameter set, configuration set, and
baseline file name, enter ParameterSet ConfigurationSet Baseline. When you

generate the iterations, the corresponding names of the test case replace each part of the
rule.

Section Option Purpose

Signal Builder Group Applies to the Inputs section of a
simulation, baseline, or equivalence test
case, for the specified Signal Builder
Group. Each Signal Builder group is used
to generate an iteration.

Parameter Set Applies to the Parameter Overrides
section of a simulation, baseline, or
equivalence test case. Each parameter
override set is used to generate an
iteration.

Run Combinations of Tests Using Iterations

Section Option Purpose

External Input Applies to the Inputs section of a
simulation, baseline, or equivalence test
case, for the specified External Inputs
sets. Each external input set is used to
generate an iteration.

Configuration Set Applies to the Configuration Setting
Overrides section of a simulation, baseline,
or equivalence test case. Each iteration
uses the configuration setting specified.

Baseline Applies only to baseline test case types,
specifically to the Baseline Criteria
section of a baseline test case. Each
baseline criteria set is used to generate an
iteration.

Simulation 1 or 2 Applies only to equivalence test case types.
At the top of the Auto Generate Reports
dialog box, there is a menu for Simulation
1 or Simulation 2. These sections
correspond to the two simulation sections
within the equivalence test case.

Create Scripted Iterations

In the scripted iterations section of the test case, you can customize your own set of
iterations using a programmatic workflow. You can define your own parameter sets,
customize the order of the iterations, create your own Monte Carlo script, and more.
Scripted iterations are generated at run time when a test executes. Enter the script into
the Scripted Iterations section text box.

6-55

6 Test Manager Test Cases

» [TERATIONS

» TABLE ITERATIONS

~ SCRIPTED ITERATIONS

3

Help on creating test iterations:

1/% Create your test iteration script here

IGEII NI =Gl Generate an iteration script usin

g templates

IS VRIS e Show the list of iterations that will execute

6-56

Iteration Script Components

An iteration script must have certain components to execute the tests. The basic iteration
script contains three elements: an iteration object, an iteration setting, and the iteration
registration. This script iterates over a single signal builder groups. This example is not
practical, but it is meant to illustrate the anatomy of an iteration script.

%% Iterate Using a Signal Builder Group

% Set up a new iteration object
testItr = sltestiteration;

% Set iteration setting using Signal Builder group
setTestParam(testItr, 'SignalBuilderGroup',sltest signalBuilderGroups{1l});

% Add the iteration to run in this test case
% The predefined sltest testCase variable is used here
addIteration(sltest testCase,testItr);

For more information about the test iteration class, see
sltest.testmanager.TestIteration. In practice, you iterate over numerous

Run Combinations of Tests Using Iterations

settings, such as multiple Signal Builder groups. If you take the stripped-down iteration
script and put it into a loop, you can iterate over all Signal Builder groups in the test case.

%% Iterate Over All Signal Builder Groups

% Determine the number of possible iterations
numSteps = length(sltest signalBuilderGroups);

% Create each iteration

for k = 1 : numSteps
% Set up a new iteration object
testItr = sltestiteration;

% Set iteration settings
setTestParam(testItr, 'SignalBuilderGroup',sltest signalBuilderGroups{k});

% Add the iteration to run in this test case
% You can pass in an optional iteration name
addIteration(sltest testCase,testItr);

end

Predefined Variables

You can use predefined variables to write iterations scripts. To see the list of predefined
variables in the Test Manager, expand the Help on creating test iterations section. You
write the iterations script in the script box within the Scripted Iterations section. The
script box is a functional workspace, which means the MATLAB base workspace cannot
access information from the script box. If you define variables in the script box, then
other workspaces cannot use the variable.

The predefined variables are:

* sltest bdroot — Model simulated by the test case, defined as a string
* sltest sut — The System Under Test, defined as a string

* sltest isharness — trueif sltest bdroot is a harness model, defined as a
logical

+ sltest externalInputs — Name of external inputs, defined as a cell array of
strings

+ sltest parameterSets — Name of parameter override sets, defined as a cell array
of strings

+ sltest configSets — Name of configuration settings, defined as a cell array of
strings

6-57

6 Test Manager Test Cases

6-58

+ sltest tableIterations — Iteration objects created in the iterations table,
defined as a cell array of sltest.testmanager.TestIteration objects

* sltest testCase — Current test case object, defined as an
sltest.testmanager.TestCase object

Scripted Iteration Templates

You can quickly generate iterations for your test case using templates for Signal Builder
groups, parameter sets, external inputs, configuration sets, and baseline sets, if you are
using a baseline test case. Scripted iteration templates follow lockstep ordering and
pairing of test settings. For more information about lockstep ordering, see “Create Table
Iterations” on page 6-52.

For example, if you want to run all signal builder groups in a scripted iteration:

Click Iteration Templates.
Select the test case settings you want to iterate through. Click OK.

The script is generated and added to the script box below any existing scripts.

3 To generate a table that gives a preview of the iterations that execute when you run
the test case, click Show Iterations.

Capture Baseline Data from Iterations

This example shows how to create a baseline test by capturing data from a test case with
table iterations. You create the iterations from Signal Builder groups in the model. Before
running the example, navigate to a writable folder on the MATLAB® path.

1. Open the model. At the command line, enter

Model = 'sltestCar';
open_system(fullfile(matlabroot, 'examples', 'simulinktest',Model));

Run Combin

ations of Tests Using Iterations

Inputs

FPassing Maneuver

Erake

Throtthe

Il

Simulink® Test™ model sltestCar

brake

h 4

Y

h

-

throtile

Engine

h 4

throttle

impaller torque

shift_logic

¥
I

ol |
L]

¥
-
=
|
-
g

it L
output torque

Nout

transmission

ahiche

transmission spesd

vehicle speed

Copyright 1997-2017 The MathWorks, Inc.

2. Create a test file that contains iterations, and open the Test Manager. At the command

line, enter

tf = sltest.testmanager.TestFile('IterationBaselineTest');
sltest.testmanager.load(tf.Name);
sltest.testmanager.view;

3. In the Test Manager, right-click the test case and select Rename. Rename the test case
Baseline Test.

4. In the System Under Test section, for Model, enter sltestCar.

5. Select the signals for the baseline data:

1

In the Simulation Outputs section, click Add. The Signal Selection dialog box

appears.

In the model canvas, select the output torque and vehicle speed signals. The
signals appear in the Signal Selection dialog box.

In the dialog box, select both signals and click Add.
The signals appear in the Logged Signals table.

6-59

6 Test Manager Test Cases

6-60

6. Add iterations for the test case:

1 Expand the Iterations section of the test case.

2 Expand the Table Iterations section and click Auto Generate.

3 In the dialog box, select Signal Builder Group. Click OK.

4 The table lists the iterations corresponding to the four Signal Builder groups.
7. Capture baseline data for the iterations:

1 In the Baseline Criteria section, click the arrow next to Capture, and select
Capture for Iterations.

Specify a location for the baseline data files.
Click Create.
The model simulates for all Signal Builder groups. The baseline data for output torque

and vehicle speed are captured in four MAT files. Also, each baseline data set is added
to its corresponding iterations in the table.

Run Combinations of Tests Using Iterations

~ BASELINE CRITERIA®

3

3

3

3

Include baseline data in test result

SMAL NAME

baseline1.mat
baseline2.mat
baseline3.mat

+'| baselined mat

= ITERATIONS*

~ TABLE ITERATIONS*

| MAME

& |Iteration
& |lteration2
¥ lteration3
¥ lteration4

0

0.00%
0.00%
0.00%

SIGNAL BUILDER GROUP

Passing Maneuver
Gradual Acceleration
Hard braking
Coasting

o= Add.. w# Capture...

IT v Foy 0 g 16T
[eraulty
IT v Foy 0 g 16T
[eraulty
IT v Foy 0 g 16T
[Lera ity

Mhafa il
[Lera ity

None
None
None

None

- Refresh

EXTERMAL
[Defaull]
[Defaull]
[Defaull]

s THER
[Leraunt

NPLUT
None
None
None

None

LG TOL +
0
0
0
0
Visualize Delete

BASELINE
baseline1.mat
baseline? mat
baseline3.mat

baselined mat

Auto Generate [l Jau |

Sweep Through a Set of Parameters

s

Scripted iterations can be used to test a model by sweeping through a set of parameters.
In this example of a parameter sweep, the number of Signal Builder groups and
parameter values is the same. Each iteration has one Signal Builder group and one
parameter value for a total of four iterations.

%% Iterate over all Signal Builder Groups and Parameters

% Determine the number of possible iterations

numSteps

length(sltest signalBuilderGroups);

% Set up the parameter values to sweep over
[0.021,0.022,0.022,0.023];

IeiValues

% Create each iteration

6-61

6 Test Manager Test Cases

for k = 1 : numSteps
% Set up a new iteration object
testItr = sltestiteration;

% Set Signal Builder iteration setting
setTestParam(testItr, 'SignalBuilderGroup',sltest signalBuilderGroups{k});

% Set value of lei (parameter in model workspace)

setVariable(testItr, 'Name', 'Iei', 'Source', 'model workspace',...
'Value',IeiValues(k));

% Add the iteration to run in this test case

addIteration(sltest testCase,testItr);
end

See Also

sltest.testmanager.TestIteration

Related Examples

. “Automate Tests Programmatically” on page 6-45

6-62

Collect Coverage in Tests

Collect Coverage in Tests

In this section...

“Enable and Collect Coverage for a Test File” on page 6-63
“Considerations for Collecting Coverage in Test Harnesses” on page 6-66

If you use Simulink Coverage to generate model and code coverage, then you can collect
coverage metrics when you run your test cases. For test cases with coverage collection
turned on, Test Manager includes the coverage of each metric you specify to collect in the
results.

To test a model for coverage, turn on coverage collection on the test file and specify the
metrics you want to collect. Test suites and test cases inherit the settings from the test
file. After coverage is turned on at the file level, you can turn it off and on for each test
suite or test case.

Enable and Collect Coverage for a Test File

Enable coverage collection, view coverage results in Test Manager, and trace coverage
results from Test Manager to the model. The model sldemo autotrans specifies
coverage.

For information about types of model coverage, see “Types of Model Coverage” (Simulink
Coverage).

Create a test file and set up the test case for your model.

2 In the test file settings, under Coverage Settings, select Record coverage for
system under test. You can also specify whether to collect coverage for referenced
models.

3 Select the coverage metrics that you want to collect.
Run the test file.

5 To view the coverage results, select the test case result in the Results and Artifacts
pane and expand the Coverage Results section.

6-63

6 Test Manager Test Cases

6 If your test file or test suite collected coverage metrics for more than one model, you
can view all the coverage metrics in one place. Select the result and expand the
Aggregated Coverage Results section.

[Ba] sf_aircraft a 428 47% e 40% = 129 u 399 wm 9% —
sldemo_autotrans A

24 94% e—— 67% m— 33% wm 44% w— 100% — 90% —

7 To trace the coverage results to the model, click the model name in the coverage
results table.

[*a] sf_aircraft a 428 47% e 40% - 12% = 33% = 98% — 50% w—
[*] sldemo_autotrans a 24 94% —— G67% — 33% 44% w— 100% — 50% w—

In the model, select model elements to see the coverage data.

6-64

Collect Coverage in Tests

L Impeller Torgue
Ti r
MNe i +
| Throtte EngineRPM
Engine
? T " nkl_
Throttle | Throtte _,
hz_= D-;‘ Gear Gear
- ".nehides;e;hD f
Tout
[k —| Nout
_ ShiftLogic ERAFRS
T Trans mission
Brake
BrakeTorgue
ManewversGLUI

o

'F'E Coverage: sldemo_autotrans EI@
o4 -
SubSystem block "Shiftlogic"

Decision 94% (30/32) Condition 67% (8/12)
MCDC 33% (2/8) Execution 100% (2/2)

To create a report of the coverage for a model, click the arrow under the Report
column in the coverage results.

- AGG

sf_aircraft L 428 47%

sldemo_autotrans E 24 949

6-65

6 Test Manager Test Cases

6-66

Tip To see aggregated results from different test files, in the Results and Artifacts
pane, select the test file results whose coverage results you want to see in the same
results file. From the context menu, select Merge Coverage Results. A results file that
contains the combined coverage results appears in the list.

Considerations for Collecting Coverage in Test Harnesses

Loading coverage results to a model, or aggregating coverage results across models,
requires a model consistent with the coverage results. Therefore, to perform aggregated
coverage collection, it is recommended that you use test harnesses configured to
automatically synchronize the component under test. Set SynchronizationMode to
Synchronize on harness open and close. For more information, see “Synchronize
Changes Between Test Harness and Model” on page 2-55.

Coverage results association depends on test harness - main model synchronization:

» If the test harness is configured to synchronize the component under test when you
open or close the harness, coverage results from the test harness are associated with
the main model. When you close the test harness, the coverage results remain active
in memory. You can aggregate coverage with additional results collected from the
main model or another synchronized test harness.

» If the test harness is configured to only synchronize the component under test when
you manually push or rebuild, the coverage results are associated with the test
harness.

* When you close the test harness, the coverage results are removed from memory.

+ If the component under test design differs between test harness and main model,
you cannot aggregate coverage results.

* You can aggregate coverage results with the main model if the component under
test design does not differ, but you must manually load the coverage results into
the main model. See the function cvload.

See Also

sltest.testmanager.CoverageSettings

See Also

Related Examples

. “Perform Functional Testing and Analyze Test Coverage” on page 9-9
. “Automate Tests Programmatically” on page 6-45
. “Specify Coverage Options” (Simulink Coverage)

6-67

6 Test Manager Test Cases

Run Tests Using Parallel Execution

6-68

In this section...

“Use Parallel Execution” on page 6-68
“When Do Tests Benefit from Using Parallel Execution?” on page 6-69

If you have a license to Parallel Computing Toolbox, then you can execute tests in parallel
using a parallel pool (parpool). Running tests in parallel can speed up execution and
decrease the amount of time it takes to get test results.

Use Parallel Execution

To run a test file using parallel execution:

1

4

The Test Manager uses the default Parallel Computing Toolbox cluster. For
information about where to specify or change the cluster, see “Discover Clusters and
Use Cluster Profiles” (Parallel Computing Toolbox).

On the Test Manager toolstrip, click the Parallel button.

> il

Run Siop Parallel

RUN l,\@
Run a test file. The test file executes using parallel pool.
To turn off parallel execution, click the Parallel button to toggle it off.

Starting a parallel pool can take time, which would slow down test execution. To reduce
time:

Make sure that the parallel pool is already running before you run a test. By default,
the parallel pool shuts down after being idle for a specified number of minutes. To
change the setting, see “Specify Your Parallel Preferences” (Parallel Computing
Toolbox).

Load Simulink on all the parallel pool workers.

See Also

When Do Tests Benefit from Using Parallel Execution?

In general, parallel execution can help reduce test execution time if you have

* A complex Simulink model that takes a long time to simulate.
* Numerous long-running tests, such as iterations.

See Also

sltest.testmanager.run

Related Examples
. “Clusters and Clouds” (Parallel Computing Toolbox)

6-69

6 Test Manager Test Cases

Apply Tolerances to Test Criteria

In this section...

“Modify Criteria Tolerances” on page 6-70

“Change Leading Tolerance in a Baseline Comparison Test” on page 6-70

You can specify tolerances in the Baseline Criteria or Equivalence Criteria sections of
baseline and equivalence test cases. You can specify relative, absolute, leading, and
lagging tolerances for a signal comparison.

To learn about how tolerances are calculated, see “How the Simulation Data Inspector
Compares Data” (Simulink).

Modify Criteria Tolerances

To modify a tolerance, select the signal name in the criteria table, double-click the
tolerance value, and enter a new value.

* ' My_mat_base mat 0.00%
< W D| 0.00% 0 0
v Vs 0 % 0.00% 0 0
v| 5d 0 0.00% 0 0
v slp 0 0.00% 0 0

If you modify a tolerance after you run a test case, rerun the test case to apply the new
tolerance value to the pass-fail results.

Change Leading Tolerance in a Baseline Comparison Test

Specify a tolerance when the difference between results falls in a range you consider
acceptable. Suppose that your model under test uses a particular solver. Solvers are
sometimes updated from one release to the next, and new solvers also become available.
If you use an updated solver or change solvers, you can specify an acceptable tolerance
for differences between your baseline and later tests.

Generate the Baseline

Generate the baseline for the sf car model, which uses the ode-5 solver.

6-70

Apply Tolerances to Test Criteria

Open the model sf_car.

Open the Test Manager and create a test file named Solver Compare. In the test
case, set the system under test to sf_car.

Select the signal to log. Under Simulation Outputs, click Add. In the model, select
the shift logic output signal. In the Signal Selection dialog box, select the check
box next to shift logic and click Add.

Save the baseline. Under Baseline Criteria, click Capture. Set the file format to
MAT. Name the baseline solver baseline and click Capture.

After you capture the baseline MAT-file, the model runs and the baseline criteria
appear in the table. Each default tolerance is 0.

+ « 5solver_baseline. mat
| shift_logic:1 0 0.00% 0 0

Change Solvers and Run the Test Case

Suppose that you want to use a different solver with your model. You run a test to
compare results using the new solver with the baseline.

1
2

In the model, change the solver to odel.
In the Test Manager, with the Solver Compare test file selected, click Run.

In the Results and Artifacts pane, notice that the test failed.
Expand the results of the failed test. Under Baseline Criteria Result, select the
shift logic signal.

The Comparison tab shows where the difference occurred.

6-71

matlab:open_system('sf_car')

6 Test Manager Test Cases

ESolverCompare x ﬂstanPage x Visualize x @NewTestCase‘l x Comparison x

M shift_logic:1 (Baseline) M shift_logic:1 (Compare To) W Tolerance

fourth

thind

sacond

first

MNone

a 2 4 8 8 10 12 14 18 18 20 22 24 28

M Difference M Tolerance

o8

0.8

0.4

0.2

a 2 4 g 8 10 12 14 16 18 20 22 24 28

4 Zoom the comparison chart where the results diverged. The comparison signal
changes ahead of the baseline, that is, it leads the baseline signal.

6-72

Apply Tolerances to Test Criteria

M shift_logic:1 (Baseline) M shift_logic:1 (Compare To) M Tolerance

zecond

5.0 5.5 8.0 8.5 7.0

Preview and Set a Leading Tolerance Value

Suppose that your team determines that a tolerance the size of the simulation step size (.
04 in this case) is acceptable. In the Test Manager, set a leading tolerance value. Use a
leading tolerance for the signal whose change occurs ahead of your baseline. Use a
lagging tolerance for a signal whose change occurs after your baseline.

You can preview how the tolerance value affects the test to see if the test passes with the
specified tolerance. Then set the tolerance on the baseline criteria and rerun the test.

1 Preview whether the tolerance you want to use causes the test to pass. With the
result signal selected, in the property box, set Leading Tolerance to . 04.

6-73

6 Test Manager Test Cases

6-74

Leading Tolerance
Lagging Tolerance
Block Path

Interp Method

~ Results: 2016-Dec-23 16:21:02 18
+ = Solver Compare 1@
- MNew Test Suite 1 18
- |£| New Test Case 1 (]
« [lx| Baseline Criteria Result @&
@ shift_logic:1 (]
~ [Pyl Sim Output (sf_car : norm
shift_logic:1
Name x| shift_logic:1
Status]
Absolute Tolerance 0
Relative Tolerance 0.00%

0

sf_carfshift_logic
zoh

Sync Method union
Max Diff 1
Baseline: Units

Baseline: Sample Time 0.04
Baseline: Data Type gearType

Compare To: Units
Compare To: Sample Time 0.04

When you change this value, the status changes to show that the failed tests pass.
When you are satisfied with the tolerance value, enter it in the baseline criteria so
you can rerun the test and save the new pass-fail result. In the Test Browser pane,
select the test case in the Solver Compare test.

Under Baseline Criteria, change the Leading Tol value for the

solver baseline.mat file to .04.

By default, each signal inherits this value from the baseline file. You can override the
value for each signal.

See Also

* & solver_baseline.mat 0.00% 0.04
+' shift_logic:1 0 0.00% 0.04 1]

4 Run the test again. The test passes.
5 To store the tolerance value and the passed test with the test file, save the test file.

See Also

sltest.testmanager.BaselineCriteria |
sltest.testmanager.SignalCriteria

Related Examples
. “Test Model Output Against a Baseline” on page 6-9

6-75

6 Test Manager Test Cases

Test Manager Limitations

6-76

In this section...

“Simulation Mode” on page 6-76
“Callback Scripts” on page 6-76
“Protected Models” on page 6-76
“Parameter Overrides” on page 6-77
“Breakpoints” on page 6-77
“Highlight in Model” on page 6-77

Simulation Mode

There are some limitations for the simulation mode in test cases:

* The System Under Test cannot be in fast restart or external mode for test execution.

* A test that is running with the System Under Test simulation mode set to Rapid
Accelerator cannot be stopped using Stop on the Test Manager toolstrip. To stop the
test, enter Ctrl+C in the MATLAB command prompt.

* Ifyourun a test using parallel execution in rapid accelerator mode, streamed signals
do not show up in the Test Manager.

Callback Scripts

The test case callback scripts are not stored with the model and do not override Simulink
model callbacks. Test case callback scripts have some limitations:

* The Test Manager cannot stop the execution of an infinite loop inside a callback script.
To stop execution of an infinite loop from a callback script, press Ctrl+C at the
MATLAB command prompt.

+ sltest.testmanager functions are not supported.

Protected Models

You cannot specify a protected model as the model used for a test case in the System
Under Test section.

Test Manager Limitations

Parameter Overrides

The Test Manager displays only top-level system parameters from the system under test.

Breakpoints

Breakpoints in Simulink and Stateflow are not supported and interrupt test execution
without warning.

Highlight in Model

If you use parallel test execution to run your tests, then you cannot use the Highlight in
Model button for verify signals.

6-77

6 Test Manager Test Cases

Test Sections

6-78

In this section...

“Select Releases for Testing” on page 6-78

“Set Preferences to Display Test Sections” on page 6-79
“Select releases for simulation” on page 6-79
“Tags” on page 6-79

“Description” on page 6-79

“Requirements” on page 6-80

“System Under Test” on page 6-80

“Parameter Overrides” on page 6-81
“Callbacks” on page 6-81

“Inputs” on page 6-83

“Simulation Outputs” on page 6-83
“Configuration Setting Overrides” on page 6-84
“Simulation 1 and Simulation 2” on page 6-84
“Equivalence Criteria” on page 6-84

“Baseline Criteria” on page 6-85

“Custom Criteria” on page 6-86

“Iterations” on page 6-87

“Coverage Settings” on page 6-87

“Test File Options” on page 6-87

To view or edit the test sections, select a test file, suite, or case in the Test Browser
pane. For information on the types of test cases, see “Introduction to Test Manager” on
page 5-2.

Select Releases for Testing

You can select MATLAB releases installed on your system to create and run tests in. Use
this preference to specify the MATLAB installations that you want to make available for
testing with Test Manager. You can use releases from R2011b forward. The releases you

Test Sections

add become available to select from the Select releases for simulation list when you
design the test.

You can add releases to the list and delete them. You cannot delete the release you
started MATLAB in.

To add a release, click Add, navigate to the location of the MATLAB installation you want
to add, and click OK.

For more information, see “Run Tests in Multiple Releases” on page 6-34.

Set Preferences to Display Test Sections

To simplify the Test Manager layout, you can select the sections of the test case, test
suite, or test file that appear in the Test Manager. Test case sections that were modified
appear in the Test Manager, regardless of the preference setting.

1 In the toolstrip, click Preferences.

2 Select the Test File, Test Suite, or Test Case tab.

3 Select sections to show, or clear sections to hide. To show only sections where
settings are set, clear all selections in the Preferences dialog box.

4 Click OK.

Also see sltest.testmanager.getpref and sltest.testmanager.setpref.

Select releases for simulation
Select the releases that you want available for running test cases. Build the list of

releases using the Release pane in the Test Manager Preferences dialog box. For more
information, see “Run Tests in Multiple Releases” on page 6-34.

Tags
Tag your tests with useful categorizations, such as safety, logged-data, or burn-in.

Filter tests using these tags when executing tests or viewing results. See “Filter Test
Execution and Results” on page 6-117.

Description

In this section, add descriptive text to your test case, test suite, or test file.

6-79

6 Test Manager Test Cases

6-80

Requirements

If you have a Simulink Requirements license, you can establish traceability by linking
your test cases to requirements. For more information, see “Link to Test Cases from
Requirements” (Simulink Requirements).

To link a test case, test suite, or test file to a requirement:

1 Open the Requirements Editor. In the Simulink menu, select Analysis >
Requirements > Requirements Editor.
Highlight a requirement.

3 In the Test Manager, in the Requirements section, click the arrow next to the Add
button and select Link to Selected Requirement.

4 The requirement link appears in the Requirements list.

System Under Test

Specify the model you want to test in the System Under Test section. To use an open

model in the currently active Simulink window, click the Use current model button e .

Note The model must be available on the path to run the test case. You can set the path
programmatically using the preload callback. See “Callbacks” on page 6-81.

Specifying a new model in the System Under Test section can cause the model
information to be out of date. To update the model test harnesses, Signal Builder groups,

and available configuration sets, click the Refresh button & .
Test Harness

If you have a test harness in your system under test, then you can select the test harness
to use for the test case. If you have added or removed testy harnesses in the model, click

the Refresh button c to view the updated test harness list.

For more information about using test harnesses, see “Refine, Test, and Debug a
Subsystem” on page 2-22.

Test Sections

Simulation Settings
You can override the System Under Test simulation settings such as the simulation

mode, start time, stop time, and initial state.

Parameter Overrides

In this section, you can specify parameter values in the test case to override the
parameter values in the model workspace, data dictionary, or base workspace.
Parameters are grouped into sets. You can turn parameter sets and individual parameter
overrides on or off by using the check box next to the set or parameter.

To add a parameter override:
1 Click Add.
A dialog box opens with a list of parameters. If the list of parameters is not current,

click the Refresh button & in the dialog box.

Select the parameter you want to override.

To add the parameter to the parameter set, click OK.

Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value column
and press Enter.

You can also add a set of parameter overrides from a MAT-file. Click the Add arrow and
select Add File to create a parameter set from a MAT-file.

For an example that uses parameter overrides, see “Overriding Model Parameters in a
Test Case”.

Callbacks
Test-File Level Callbacks

Two callback scripts are available in each test suite that execute at different times during
a test:

» Setup runs before test file executes.

6-81

6 Test Manager Test Cases

6-82

* Cleanup runs after test file executes.
Test-Suite Level Callbacks

Two callback scripts are available in each test suite that execute at different times during
a test:

* Setup runs before the test suite executes.

* Cleanup runs after the test suite executes.

Test-Case Level Callbacks

Three callback scripts are available in each test case that execute at different times
during a test:

* Pre-load runs before the model loads and before the model callbacks.

* Post-load runs after the model loads and the PostLoadFcn model callback.

* Cleanup runs after simulations and model callbacks.

To run a single callback script, click the Run button > above the corresponding script.

See “Test Manager Limitations” on page 6-76 for the limitations of callback scripts in test
cases. For information on Simulink model callbacks, see “Model Callbacks” (Simulink).

You can use these predefined variables in the test case callbacks:
+ sltest bdroot available in Post-Load: The model simulated by the test case. The

model can be a harness model.

* sltest sut available in Post-Load: The system under test. For a harness, it is the
component under test.

* sltest isharness available in Post-Load: Returns true if sltest bdrootisa
harness model.

* sltest simout available in Cleanup: Simulation output produced by simulation.

* sltest iterationName available in Pre-Load, Post-Load, and Cleanup: Name of
the currently executing test iteration.

Test Sections

Inputs

For test inputs, you can use inputs from signal builder groups in the model, or you can
use external inputs from MAT-files or Microsoft Excel files.

* To use inputs from a Signal Builder block group in the model or test harness, select
the Signal Builder Group check box, and then select the group from the list.

* To select an external input set in the External Inputs table to run when the test case
executes, click Add. Select a MAT-file or Microsoft Excel file to import as inputs to
your test case. Select the file you want to use from the table.

For more information on using external files as inputs, see “Use External Inputs in Test
Cases” on page 6-29. For information about the file format for Microsoft Excel files in
Test Manager, see “Specify Microsoft Excel File Format for Signal Data” on page 6-21.

You can also use Test Manager to create input file templates as MAT-files or Excel files
and enter the data in them. See “Create Data Files to Use as Test Inputs” on page 6-31.

Edit Input Data Files in Test Manager
From the Test Manager, you can edit your input data files.

To edit a file, select the file and click Edit. You can then edit the data in the signal editor
for MAT-files or Microsoft Excel for Excel files.

To learn about the syntax for Excel files, see “Specify Microsoft Excel File Format for
Signal Data” on page 6-21.
Simulation Outputs

Use the Simulation Outputs section to add signal outputs to your test results. Signals
logged in your model or test harness show up in the results. You add signals to log or add
a signal set.

Adding signals to log to the test case does not alter the model or test harness.

1 Under Simulation Outputs, click Add.

2 In the system under test, select the signals you want to log.

3 In the Signal Selection dialog box, select the check box next to the signals whose
output you want to capture, and click Add.

To add a signal set, click the Add arrow and select Signal Set.

6-83

6 Test Manager Test Cases

6-84

Configuration Setting Overrides

In the test case, you can specify configuration settings that differ from the settings in the
model. Setting the configuration settings in the test case enables you to try different
configurations without modifying your model.

Simulation 1 and Simulation 2

These sections appear in equivalence test cases. Use them to specify the details about the
simulations that you want to compare. Enter the system under test, the test harness if
applicable, and simulation setting overrides under Simulation 1. You can then click
Copy settings from Simulation 1 under Simulation 2 to use a starting point for your
second set of simulation settings.

For the test to pass, Simulation 1 and Simulation 2 must log the same signals.

Use these sections with the Equivalence Criteria section to define the premise of your
test case. For an example of an equivalence test, see “Test Two Simulations for
Equivalence”.

Equivalence Criteria

This section appears in equivalence test cases. The equivalence criteria is a set of signal
data to compare in Simulation 1 and Simulation 2. Specify tolerances to regulate pass-fail
criteria of the test. You can specify absolute, relative, leading, and lagging tolerances for
the signals.

To specify tolerances, first click Capture to run the system under test in Simulation 1 and
add signals marked for logging to the table. Specify the tolerances in the table.

After you capture the signals, you can select signals from the table to narrow your results.
If you do not select signals under Equivalence Criteria, running the test case compares
all the logged signals in Simulation 1 and Simulation 2.

For an example of an equivalence test case, see “Test Two Simulations for Equivalence”.

Test Sections

Baseline Criteria

The Baseline Criteria section appears in baseline test cases. When a baseline test case
executes, Test Manager captures signal data from signals in the model marked for logging
and compares them to the baseline data.

Capture Baseline Criteria

To capture logged signal data from the system under test to use as the baseline criteria,
click Capture. Then follow the prompts in the Capture Baseline dialog box. Capturing the
data compiles and simulates the system under test and stores the output from the logged
signals to the baseline. For a baseline test example, see “Test Model Output Against a
Baseline” on page 6-9.

You can save the signal data to a MAT-file or a Microsoft Excel file. To understand the
format of the Excel file, see “Specify Microsoft Excel File Format for Signal Data” on page
6-21.

You can capture the baseline criteria using the current release for simulation or another
release installed on your system. Add the releases you want to use in the Test Manager
preferences. Then, select the releases you want available in your test case using the
Select releases for simulation option in the test case. When you run the test, you can
compare the baseline against the release you created the baseline in or against another
release. For more information, see “Run Tests in Multiple Releases” on page 6-34.

When you select Excel as the output format, you can specify the sheet name to save the
data to. If you use the same Excel file for input and output data, by default both sets of
data appear in the same sheet.

If you are capturing the data to a file that already contains outputs, specify the sheet
name to overwrite the output data only in that sheet of the file.

To save a baseline for each test case iteration in a separate sheet in the same file, select
Capture a baseline for each iterations. This check box appears only if your test case
already contains iterations. For more information iterations, see “Run Combinations of
Tests Using Iterations” on page 6-52.

Specify Tolerances

You can specify tolerances to determine the pass-fail criteria of the test case. You can
specify absolute, relative, leading, and lagging tolerances for individual signals or the
entire baseline criteria set.

6-85

6 Test Manager Test Cases

6-86

After you capture the baseline, the baseline file and its signals appear in the table. In the
table, you can set the tolerances for the signals. To see tolerances used in an example for
baseline testing, see “Test Model Output Against a Baseline” on page 6-9.

Add File as Baseline

By clicking Add, you can select an existing file as a baseline. You can add MAT-files and
Microsoft Excel files as the baseline. Format Microsoft Excel files as described in “Specify
Microsoft Excel File Format for Signal Data” on page 6-21.

Update Signal Data in Baseline

You can edit the signal data in your baseline, for example, if your model changed and you
expect different values. To open the signal editor or the Microsoft Excel file for editing,
select the baseline file from the list and click Edit. See “Manually Update Signal Data in a
Baseline” on page 6-42.

You can also update your baseline when you examine test failures in the data inspector
view. See “Examine Test Failures and Modify Baselines” on page 6-39.

Custom Criteria

This section includes an embedded MATLAB editor to define custom pass/fail criteria for
your test. Select function customCriteria(test) to enable the criteria script in the
editor. Custom criteria operate outside of model run time; the script evaluates after model
simulation.

Common uses of custom criteria include verifying signal characteristics or verifying test
conditions. MATLAB Unit Test qualifications provide a framework for verification criteria.
For example, this custom criteria script gets the last value of the signal PhiRef and
verifies that it equals 0:

% Get the last value of PhiRef from the dataset Signals Reql 3
lastValue = test.sltest simout.get('Signals Reql 3').get('PhiRef').Values.Data(end);

% Verify that the last value equals 0
test.verifyEqual(lastValue,0);

See “Apply Custom Criteria to Test Cases” on page 6-93. For a list of MATLAB Unit Test
qualifications, see “Types of Qualifications” (MATLAB).

You can also define plots in the Custom Criteria section. See “Create, Store, and Open
MATLAB Figures” on page 6-104.

See Also

Iterations

Use this test case section to generate test iterations for multiple combinations of test
settings. Iterations are helpful for Monte Carlo or parameter sweep tests. For more
information about test iterations, see “Run Combinations of Tests Using Iterations” on
page 6-52.

Coverage Settings

Use this test section to configure coverage collection for test files, test suites, and test

cases. For more information about collecting coverage in your test, see “Collect Coverage
in Tests” on page 6-63.

Test File Options
Close open figures at the end of execution

When your tests generate figures, select this option to clear the working environment of
figures after the test execution completes.

Store MATLAB figures

Select this option to store figures generated during the test with the test file. You can
enter MATLAB code that creates figures and plots as a callback or in the test case
Custom Criteria section. See “Create, Store, and Open MATLAB Figures” on page 6-104.
Generate report after execution

Select Generate report after execution to create a report after the test executes.
Selecting this option displays report options that you can set. The settings are saved with

the test file.

For detailed reporting information, see “Export Test Results and Generate Reports” on
page 7-9 and “Customize Test Reports” on page 7-14.

See Also

sltest.testmanager.getpref | sltest.testmanager.setpref

6-87

6 Test Manager Test Cases

Test Models Using Inputs Generated by Simulink Design
Verifier

In this section...

“Overall Workflow” on page 6-88

“Test Case Generation Example” on page 6-89

Using Simulink Design Verifier, you can generate test inputs that replicate design errors,
achieve test objectives, or meet coverage criteria. Simulink Test can create test cases that
use test inputs and expected outputs from Simulink Design Verifier.

Overall Workflow

Test case generation follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

» Ifyou use an existing results file, you can load results by either:

* Using the Simulink Test command sltest.import.sldvData.

* Using Simulink Design Verifier menu items. In the model, select Analysis >
Design Verifier > Results > Load. Select the MAT file with the analysis
results.

* Ifyou run a model analysis, the Simulink Design Verifier Results Summary
window appears after the analysis completes.

2 In the results summary window, click Export test cases to Simulink Test.
Enter the name of an existing or new test harness.
Select a test harness source for the generated test inputs. You can select
* Inport: The inputs are contained in the Simulink Design Verifier data file and
mapped to Inport blocks in the test harness. The mapping is shown in the Inputs
section of the test case. Using the Inport option allows you to map other inputs

to the test harness Inport blocks, which can be useful for running multiple test
cases or iterations using the same test harness.

6-88

Test Models Using Inputs Generated by Simulink Design Verifier

* Signal Builder: The inputs are contained in groups in a Signal Builder block
inside the test harness. Using the Signal Builder option allows you to view the
test inputs in the Signal Builder block editor.

Select a new or existing test file, and enter names for the test file and test case.

Click OK to export the test cases to Simulink Test. The test files and test cases are
updated in the Test Manager.

Test Case Generation Example

This example shows how to generate test cases for a controller subsystem using Simulink
Design Verifier, and export the test cases to a test file in Simulink Test. The example
requires a Simulink Design Verifier license.

The model is a closed-loop heat pump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1

Open the model.

open_system(fullfile(docroot, 'toolbox"', 'sltest', 'examples’,...
'sltestTestCaseFromDVExample.slx'));

Set the current working folder to a writable folder.

In the model, generate tests for the Controller subsystem. Right-click the
Controller block and select Design Verifier > Generate Tests for Subsystem.

Simulink Design Verifier generates tests for the component.
In the results summary window, click Export test cases to Simulink Test.
In the Export Design Verifier Test Cases dialog box, enter:

* Test Harness: TestHarnessl

* Harness Source: Signal Builder

* Select Use a new test file

* Test File: . /TestFile GeneratedTests.mldatx
* Test Case: <Create a new test case>

Click OK.

6-89

6 Test Manager Test Cases

A new test file is created in the working folder, and a test harness is added to the
main model, owned by the Controller subsystem. Click the harness badge to

preview the new test harness.

n P Tt contral_in
I ;
l:Dl'ﬂr::ﬂ_gut H Troom
S @—F Toutside
In2

Controller Plan

. TestHarmess1 :
Requirement2
= e n

Internal Test Harnesses |gpen test harness|

7 Click the TestHarness1 thumbnail to open the harness, and double-click the Signal
Builder block source to see the generated inputs.

6-90

Test Models Using Inputs Generated by Simulink Design Verifier

Active Group: Test Case 1 "| Q| =| »|
6% *
4+ Tset
2 -
0kt 1 .. . £
% - Troom_in '
2 - J
[2] - DeltaT fan 1
Al
_E 1 1 1 1 1 1 1 1
10
5 | DeltaT_pump
D i | 1 1 1 1 1 1 1 1 I
2 -
|:| -
'2 B | | | | 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10 11

8 In the Test Manager, the new test case displays the system under test, and the test
harness containing the generated inputs in the Signal Builder source. Expand the
Iterations section to see the iterations corresponding to the signal builder groups.

6-91

6 Test Manager Test Cases

Pesults and Artifacts |=| MewTestCasel

| ~ ITERATIONS®

= =] TestFile_GeneratedTests
~[5] Mew TestSuite 1
[=] MewTestCase 1

~ TABLE ITERATIONS®

See Also
sltest.import.sldvData

6-92

| HAME

| TestCase 1
«|Test Case 2
« TestCase 3
«|Test Case 4
« TestCase 5
+|Test Case 6

i\ startPage =

SIGNAL BUILDER GROUP
TestCasel
TestCase 2
Test Case 3
TestCase 4
TestCase5
TestCase @

PARAMETER SET

EXTERMAL INPUT LOGGED SIGMAL SET +

"

Apply Custom Criteria to Test Cases

Apply Custom Criteria to Test Cases

In this section...
“MATLAB Testing Framework” on page 6-93
“Define a Custom Criteria Script” on page 6-94

“Reuse Custom Criteria and Debug Using Breakpoints” on page 6-95
“Assess the Damping Ratio of a Flutter Suppression System” on page 6-97
“Custom Criteria Programmatic Interface Example” on page 6-102

Testing your model often requires assessing conditions that ensure a test is valid, in
addition to verifying model behavior. MATLAB Unit Test provides a framework for such
assessments. In Simulink Test, you can use the test case custom criteria to author specific
assessments, and include MATLAB Unit Test qualifications in your script.

Custom criteria apply as post-simulation criteria to the simulation output. If you require
run-time verifications, use a verify() statement in a Test Assessment or Test Sequence
block. See “Run-Time Assessments” on page 3-45.

MATLAB Testing Framework

A custom criteria script is a method of test, which is a matlab.unittest test case
object. To enable the function, in the test case Custom Criteria section of the Test
Manager, select function customCriteria(test). Inside the function, enter the custom
criteria script in the embedded MATLAB editor.

The embedded MATLAB editor lists properties of test. Create test assessments using
MATLAB Unit Test qualifications. Custom criteria supports verification and assertion type
qualifications. See “Types of Qualifications” (MATLAB). Verifications and assertions
operate differently when custom criteria are evaluated:

* Verifications - Failures appear in the test results and other assessments are evaluated.
Use verifications for general assessments, such as checking simulation against
expected outputs.

Example: test.verifyEqual(lastValue,0)

» Assertions - Use assertions for conditions that render the criteria invalid. Failures
appear in the test results and the custom criteria script evaluation exits.

6-93

6 Test Manager Test Cases

6-94

Example: test.assertEqual(lastValue,0).

Define a Custom Criteria Script

This example shows how to create a custom criteria script for an autopilot test case.

1

Open the test file.
sltest.testmanager.load('AutopilotTestFile.mldatx"')
sltest.testmanager.view

In the Test Browser, select AutopilotTestFile > Basic Design Test Cases >
Requirement 1.3 Test. In the test case, expand the Custom Criteria section.

Enable the custom criteria script by selecting function customCriteria(test).

In the embedded MATLAB editor, enter the following script. The script gets the final
value of the signals Phi and APEng, and verifies that the final values equal 0.

% Get the last values
lastPhi = test.sltest simout.get('Signals Reql 3').get('Phi').Values.Data(end);
lastAPEng = test.sltest simout.get('Signals Reql 3').get('APEng').Values.Data(end);

% Verify the last values equal 0
test.verifyEqual(lastPhi,Q,['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng, false,['Final APEng value: ',num2str(lastAPEng),'.'1l);

Run the test case.

In the Results and Artifacts pane, expand the Custom Criteria Result. Both
criteria pass.

- |£| Reguirement 1.3 Test L]
b |l Werify Statements]
v Pl Sirn Output (RollAutopilottdIRef :
- [zl Custom Criteria Result L]

[#| Final Phivalue: 0. { verifyEqual @
[z| Final APEng value: 0. { verifyEg @

Apply Custom Criteria to Test Cases

Reuse Custom Criteria and Debug Using Breakpoints

In addition to authoring criteria scripts in the embedded MATLAB editor, you can author
custom criteria in a standalone function, and call the function from the test case. Using a
standalone function allows you

* To reuse the custom criteria in multiple test cases.

» To set breakpoints in the criteria script for debugging.

* To investigate the simulation output using the command line.

In this example, you add a breakpoint to a custom criteria script. You run the test case,
list the properties of the test object at the command line, and call the custom criteria
from the test case.

Call Custom Criteria Script from the Test Case
1 Navigate to the folder containing the criteria function.

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
2 Open the custom criteria script

open('sltestCheckFinalRol1lRefValues.m')

This is a custom criteria function for a Smiulink Test test case.
The function gets the last values of Phi and APEng from the
Requirements 1.3 test case in the test file AutopilotTestFile.

o® o° of

function sltestCheckFinalRollRefValues(test)

% Get the last values
lastPhi = test.sltest simout.get('Signals Reql 3').get('Phi').Values.Data(end)
lastAPEng = test.sltest simout.get('Signals Reql 3').get('APEng').Values.Data(end)

% Verify the last values equal 0
test.verifyEqual(lastPhi,@,['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng, false,['Final APEng value: ',num2str(lastAPEng),'.'1l);

3 Open the test file
sltest.testmanager.load('AutopilotTestFile.mldatx")
sltest.testmanager.view

4 In the embedded MATLAB editor under Custom Criteria, enter the function call to
the custom criteria:

6-95

6 Test Manager Test Cases

sltestCheckFinalRollRefValues(test)
Set Breakpoints and List test Properties

1 Online 8 of sltestCheckFinalRollRefValues.m, set a breakpoint by clicking the
dash to the right of the line number.

2 In the Test Manager, run the test case.

The command window displays a debugging prompt.

3 Enter test at the command prompt to display the properties of the
STMCustomCriteria object. The properties contain characteristics and simulation
data output of the test case.

test =
STMCustomCriteria with properties:

TestResult: [1x1l sltest.testmanager.TestCaseResult]
sltest simout: [1x1 Simulink.SimulationOQutput]
sltest testCase: [1x1 sltest.testmanager.TestCase]
sltest bdroot: {'RollReference Requirementl 3'}
sltest sut: {'RollAutopilotMdlRef/Roll Reference'}
sltest isharness: 1
sltest iterationName: '

The property sltest simout contains the simulation data. To view the data
PhiRef, enter

test.sltest simout.get('Signals Reql 3').get('PhiRef")
ans =

Simulink.SimulationData.Signal
Package: Simulink.SimulationData

Properties:
struct with fields:

Name: 'PhiRef’
PropagatedName: ''
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
PortType: 'outport'
PortIndex: 1
Values: [1x1 timeseries]

6-96

Apply Custom Criteria to Test Cases

4 In the MATLAB editor, click Continue to continue running the custom criteria script.

In the Results and Artifacts pane, expand the Custom Criteria Result. Both
criteria pass.

6 To reuse the script in another test case, call the function from the test case custom
criteria.

Assess the Damping Ratio of a Flutter Suppression System

Using a custom criteria script, verify that wing oscillations are damped in multiple
altitude and airspeed conditions.

The Simulation and Model

The model uses Simscape™ to simulate a Benchmark Active Controls Technology (BACT) /
Pitch and Plunge Apparatus (PAPA) setup. It uses Aerospace Blockset™ to simulate
aerodynamic forces on the wing.

The test iterates over 16 combinations of Mach and Altitude. The test case uses custom
criteria with Curve Fitting Toolbox™ to find the peaks of the wing pitch, and determine
the damping ratio. If the damping ratio is not greater than zero, the assessment fails.

Running this test case requires

* Simulink® Test™

* Simscape Multibody™
* Aerospace Blockset™

* Curve Fitting Toolbox™

Open the model and the test file.

open_system(fullfile(matlabroot, 'examples', 'simulinktest', ...
'sltestFlutterSuppressionSystemExample.slx'))

6-97

6 Test Manager Test Cases

aPSF

Oflutter = 1471 PSF

1

—' |I>_>E(> ‘Wing Plunge (in} [:]
1
Ii" _@ _>E(> Wing Fitch (deg)
Q (P5F)
_bE(> Aileron Paos (dag)
Plunge
Pitch

| Enable/Disable Controller . Aileron Pos

Controller

TE Paosition {deg)

Desired angle

Mach

States P States Pitch

e] _—— M' . L) —
Altitude

Aara Forces

angla

BACT Wing & PAPA Mount

open(fullfile(matlabroot, 'examples', 'simulinktest', ...
'sltestFlutterCriteriaTest.mldatx"'))

Custom Criteria Script

The test case custom criteria uses this script to verify that the damping ratio is greater
than zero.

% Get time and data for pitch
Time = test.sltest simout.get('sigsOut').get('pitch').Values.Time(1:15000);
Data = test.sltest simout.get('sigsOut').get('pitch').Values.Data(1l:15000);

% Find peaks

[~, peakIds] = findpeaks(Data, 'minpeakheight', 0.002, 'minpeakdistance', 50);
peakTime= Time(peakIds);

peakPos = Data(peakIds);

rn = peakPos(1)./peakPos(2:end);

L = 1:length(rn);

6-98

Apply Custom Criteria to Test Cases

% Do curve fitting
fittedModel = exponentialFitAndPlot(L, rn);
delta = fittedModel.d;

% Find damping ratio
dRatio = delta/sqrt((2*pi)~2+delta2);

% Make sure damping ratio is greater than 0
test.verifyGreaterThan(dRatio, 0, 'Damping ratio must be greater than 0');

Test Results

Running the test case returns two conditions in which the damping ratio is greater than
zZero.

results = sltest.testmanager.run

results =
ResultSet with properties:

Name: 'Results: 2018-Feb-26 19:40:05'
NumPassed: 14
NumFailed: 2
NumDisabled: 0
NumIncomplete: 0
NumTotal: 16
NumTestCaseResults: 0O
NumTestSuiteResults: 0
NumTestFileResults: 1
Outcome: Failed
StartTime: '2018-Feb-26 19:40:05'
StopTime: '2018-Feb-26 19:43:20'
Duration: 195
CoverageResults: []
Release: ''

6-99

6 Test Manager Test Cases

- lteration13 (]
v P Sim Output (FlutterSuppressionSystem © r

~ [lz Custom Criteria Result o

Damping ratic must be greaterthan 0 @

= lteration14 (]
v Pl Sim Output (FlutterSuppressionSystem : r

+ [lz Custom Criteria Result
Damping ratio must be greaterthan 0 @
3 lteration15 ()

o

The wing pitch plots from iteration 12 and 13 show the difference between a positive
damping ratio (iteration 12) and a negative damping ratio (iteration 13).

6-100

Apply Custom Criteria to Test Cases

B Wing Pitch (deg) lteration 12 (pass)
0.05 }-
0 4
0.05
4 8 8 10 12 14 16 18
B 'Wing Pitch (deq) lteration 13 (fail)
100 +
o
-100 +—

sltest.testmanager.close

6-101

6 Test Manager Test Cases

6-102

close system('sltestFlutterSuppressionSystemExample.slx"',0)

Custom Criteria Programmatic Interface Example
This example shows how to set and get custom criteria using the programmatic interface.

Before running this example, temporarily disable warnings that result from verification
failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

Load a Test File and Get Test Case Object

tf = sltest.testmanager.load('AutopilotTestFile.mldatx");
ts = getTestSuiteByName(tf, 'Basic Design Test Cases');
tc = getTestCaseByName(ts, 'Requirement 1.3 Test');

Create the Custom Criteria Object and Set Criteria

Create the custom criteria object.
tcCriteria = getCustomCriteria(tc)

tcCriteria =
CustomCriteria with properties:

Enabled: 0
Callback: '% Return value: customCriteria...'

Create the custom criteria expression. This script gets the last value of the signal Phi and
verifies that it equals 0.

criteria = ...
sprintf(['lastPhi = test.SimOut.get(''Signals Reql 3'"')"',...
".get(''Phi'"').Values.Data(end);\n',...
'test.verifyEqual(lastPhi,0,["''Final: '',num2str(lastPhi),''."'1);'1)

criteria =
'lastPhi = test.SimOut.get('Signals Reql 3').get('Phi').Values.Data(end);
test.verifyEqual(lastPhi,0,['Final: ',num2str(lastPhi),'."']);"

See Also

Set and enable the criteria.

tcCriteria.Callback = criteria;
tcCriteria.Enabled = true;

Run the Test Case and Get the Results

Run the test case.

tcResultSet = run(tc);

Get the test case results.

tcResult = getTestCaseResults(tcResultSet);
Get the custom criteria result.

ccResult = getCustomCriteriaResult(tcResult)

ccResult =
CustomCriteriaResult with properties:

Outcome: Failed
DiagnosticRecord: [1x1 sltest.testmanager.DiagnosticRecord]

Restore warnings from verification failures.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

See Also

Related Examples
. “Test Models Using MATLAB Unit Test” on page 6-107
. “Create, Store, and Open MATLAB Figures” on page 6-104

6-103

6 Test Manager Test Cases

Create, Store, and Open MATLAB Figures

6-104

In this section...

“Create a Custom Figure for a Test Case” on page 6-104

“Include Figures in a Report” on page 6-106

You can create figures using MATLAB commands to include with test results and reports.
Enter the commands in a test case section that accepts MATLAB code. These sections
include the test case Custom Criteria section, and callbacks that can execute with your
test case.

If you include code that creates figures with your test case, you can:

» Display the figures after the test runs

» Store the figures with your test case

* Include them in a report

» Access stored figures from your test results

To specify this behavior, use the Test File Options section under the Test File settings.

* Select Close all open figures at the end of execution if you do not need to see the
figures right after the test executes, for example, if you are storing the figures or
including them in a report. Clear this check box if you are not storing the figures and
you want to view them after the test executes.

* Select Store MATLAB figures if you want to save the figures with the test results.
This option also enables you to open the figures from the results and to include them
in a report.

After you run the test, the figures appear under MATLAB Figures in the test case
results.

Create a Custom Figure for a Test Case

In this example, add code that creates a figure to the Custom Criteria section of a test
case. To access the figure from the test results, set options on the test file.

1 Open the model sldemo absbrake.
2 In the Test Manager, create a test file and name it custom figures.

matlab:open_system('sldemo_absbrake')

Create, Store, and Open MATLAB Figures

In the default test case, under System Under Test, set the model to
sldemo_absbrake.

Under Custom Criteria, select the function customCriteria(test) check box and
paste this code in the text box.

h = findobj (0, 'Name', 'ABS Speeds and Slip');
if isempty(h)
h=figure('Position',[26 100 452 7001, ...

'Name', 'ABS Speeds and Slip',...
"NumberTitle', 'off');

end

figure(h)

set(h, 'DefaultAxesFontSize',8)

% Log data in sldemo absbrake output
out = test.sltest simout.get('sldemo absbrake output');

% Plot wheel speed and car speed
subplot(3,1,1);
plot(out.get('yout').Values.Vs.Time,
out.get('yout').Values.Vs.Data);
grid on;
title('Vehicle speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,2);
plot(out.get('yout').Values.Ww.Time,
out.get('yout').Values.Ww.Data);
grid on;
title('Wheel speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,3);
plot(out.get('slp').Values.Time,
out.get('slp').Values.Data);
grid on;
title('Slip'); xlabel('Time(sec)'); ylabel('Normalized Relative Slip');
Set the figure options for the test file custom figures. Under Test File Options:

* Select Close all open figures at the end of execution. This option closes
figures created by your Test Manager MATLAB code.

* Select Store MATLAB figures.

With the test case or the test file selected, click Run.

In the Results and Artifacts pane, select the test case under the results for this test
run. Click the links under MATLAB Figures to see the plots generated when the test
ran. The plot generated by the code you entered appears under Custom Criteria.

6-105

6 Test Manager Test Cases

6-106

4
1
1
I
T
Im

T Custom Criteria

ABRS Speeds and Slip

Include Figures in a Report

You can select the MATLAB Figures option in the Create Test Results Report dialog box
to include custom figures in your report. Alternatively, you can set report options under
Test File Options. The Test File Options settings are saved with the test file.

1 Select the test file custom figures.

2 Under Test File Options, select Generate report after execution. The section
expands, displaying the same report options you can set using the dialog box.

3 To see the figures regardless of how the tests performed, set Results for to Al11
Tests.

4 Select the MATLAB figures check box.

5 With the test file selected, run the test. Running the test generates the report and
opens it in the PDF viewer.

6 Examine the report. The plot generated by the code you entered under Custom
Criteria appears in the report section Custom Criteria Plots.

See Also

sltest.testmanager.Options | sltest.testmanager.TestCase.getOptions |
sltest.testmanager.TestFile.getOptions |
sltest.testmanager.TestSuite.getOptions

Related Examples

“Export Test Results and Generate Reports” on page 7-9

Test Models Using MATLAB Unit Test

Test Models Using MATLAB Unit Test

In this section...

“Overall Workflow” on page 6-107

“Considerations” on page 6-107

“Comparison of Test Nomenclature” on page 6-108

“Basic Workflow Using MATLAB® Unit Test” on page 6-109

“Test a Model for Continuous Integration Systems” on page 6-110

You can use the MATLAB Unit Test framework to run tests authored in Simulink Test.
Using the MATLAB Unit Test framework:

* Allows you to execute model tests together with MATLAB Unit Test scripts, functions,
and classes.

* Enables model and code testing using the same framework.

* Enables integration with continuous integration (CI) systems, such as Jenkins™.

Overall Workflow

To run tests with MATLAB Unit Test:

1 Create a TestSuite from the Simulink Test file.
2 Create a TestRunner.
3 Create plugin objects to customize the TestRunner. For example:

* The TAPPlugin produces a results stream according to the Test Anything Protocol
for use with certain CI systems.

* The ModelCoveragePlugin specifies model coverage collection and makes
coverage results accessible from the command line.

4 Add the plugins to the TestRunner.

5 Run the test using the run method, or run tests in parallel using the runInParallel
method.

Considerations

When running tests using MATLAB Unit Test, consider the following:

6-107

6 Test Manager Test Cases

6-108

» Ifyou disable a test in the Test Manager, the test is filtered using MATLAB Unit Test,
and the result reflects a failed assumption.

Comparison of Test Nomenclature

MATLAB Unit Test has analogous properties to the functionality in Simulink Test. For
example,

» If the test case contains iterations, the MATLAB Unit Test contains parameterizations.

o If the test file or test suite contains callbacks, the MATLAB Unit Test contains one or
more callbacks fixtures.

Test Case Iterations and MATLAB Unit Test parameterizations

parameterization details correspond to properties of the iteration.

Simulink Test MATLAB Unit Test
Iteration type: Scripted parameterization property:
ScriptedIteration
Iteration type: Table parameterization property:
TableIteration
Iteration name parameterization Name
Test case iteration object parameterization Value

Test Callbacks and MATLAB Unit Test Fixtures

Fixtures depend on callbacks contained in the test file. Fixtures do not include test case
callbacks, which are executed with the test case itself.

Callbacks in Simulink Test Fixtures in MATLAB Unit Test

Test file callbacks FileCallbacksFixture

Test suite callbacks SuiteCallbacksFixture

File and suite callbacks Heterogeneous CallbacksFixture,

containing FileCallbacksFixture and
SuiteCallbacksFixture

No callbacks No fixture

Test Models Using MATLAB Unit Test

Basic Workflow Using MATLAB® Unit Test

This example shows how to create and run a basic MATLAB® Unit Test for a test file
created in Simulink® Test™. You create a test suite, run the test, and display the
diagnostic report.

Before running this example, temporarily disable warnings that result from verification
failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

1. Author a test file in the Test Manager, or start with a preexisting test file. For this
example, AutopilotTestFile tests a component of an autopilot system against several
requirements, using verify statements.

2. Create a TestSuite from the test file.
apsuite = testsuite('AutopilotTestFile.mldatx");

3. Run the test, creating a TestResult object. The command window returns warnings
from the verify statement failures.

apresults = run(apsuite);

Setting up FileCallbacksFixture
Done setting up FileCallbacksFixture: Invoked setup callback of "AutopilotTestFile".

Running AutopilotTestFile > Basic Design Test Cases

Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Tes:

Failed criteria: Verification
--> Simulink Test Manager Results:
Results: 2018-Feb-26 18:54:26/AutopilotTestFile/Basic Design Test Cases/Re

Done AutopilotTestFile > Basic Design Test Cases

6-109

6 Test Manager Test Cases

6-110

Tearing down FileCallbacksFixture
Done tearing down FileCallbacksFixture: Invoked cleanup callback of "AutopilotTestFile'

Failure Summary:

Name Failed Incomple

AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test X

4. To view the details of the test, display the Report property of the DiagnosticRecord
object. The record shows that a verification failed during the test.

apresults.Details.DiagnosticRecord.Report

ans =

Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.:

Failed criteria: Verification
--> Simulink Test Manager Results:
Results: 2018-Feb-26 18:54:26/AutopilotTestFile/Basic Design Test Cas¢

Enable warnings.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

Test a Model for Continuous Integration Systems

This example shows how to use MATLAB® Unit Test to test a model, and use the
TAPPlugin to create TAP results. You can use TAP with CI systems. The model is a
controller-plant system of a flight controller, aircraft model, and environment model.

Test Models Using MATLAB Unit Test

Create a test suite and a test runner, and customize the runner with the plugin that
creates the TAP file. When you run the test, it fails on several iterations. The results are
written to the TAP file.

Before performing this example, set the working directory to a writable location on the
path.

1. Open the Model

open_system(fullfile(matlabroot, 'examples’', 'simulinktest', ...
'sltestFl4ParameterSweep.slx'))

—0
—C)
Stick Input {in)

1 »
stick |nPUlilcmnpm numis) Filat G force
| alpha (red) Elevator Command (deg) = Ten(s | Elavator Deflection d (deg) Scope
den(s) Wartical Velocity w (fi'sec) kil L
»!
>3 irmdser) Actamtor Piot gforca {g) »(2)
»
Controller Model =1 Nz Pilat {g)
| Vartical Gust wGust (fiisec) Nz pilot

calculation

Quti

Pitch Rata g (radisac) g
Qutz Rotary Gust qGust (radisec)

Wind Gust
—» —————— 1
Dynamics alpha {rad})
-4*@

Angle of
Attack

h

F14 Flight Contral

Copyright 1920-2016 The MathWarks, Inc.

2. Open the Test File

The test case creates a square wave input to the controller, and sweeps through 25
iterations of the parameters a and b. It compares the alpha output to a baseline with a
tolerance of 0.0046 and fails any output which exceeds this tolerance.

sltest.testmanager.view;
sltest.testmanager.load(fullfile(matlabroot, 'examples', 'simulinktest’', ...
'fl4ParameterSweepTest.mldatx'));

3. Import the TestRunner, TestSuite, TAPPlugin, and ToFile classes.

6-111

6 Test Manager Test Cases

6-112

import matlab.unittest.TestRunner

import matlab.unittest.TestSuite

import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

4. Create the test suite object.

suite = testsuite(fullfile(matlabroot, 'examples', 'simulinktest', ...
'fl4ParameterSweepTest.mldatx"'))

suite =
1x25 Test array with properties:

Name

ProcedureName
TestClass
BaseFolder
Parameterization
SharedTestFixtures
Tags

Tests Include:
25 Unique Parameterizations, O Shared Test Fixture Classes, 0 Tags.

5. Create the test runner object, and set it to display output to the command window.
fldrunner = TestRunner.withTextOutput;
6. Create a TAP plugin that sends output to the file F14TapOutput. tap.

tapFile = 'Fl4TapOutput.tap';
plugin = TAPPlugin.producingVersionl3(ToFile(tapFile));

7. Add the plugin to the test runner.
addPlugin(fl4runner,plugin)

8. Run the test. The test fails several iterations in which the delta between the signal
output and the baseline exceeds the tolerance.

result = run(fld4runner,suite);

Running fl4ParameterSweepTest > New Test Suite 1

Test Models Using MATLAB Unit Test

Failed criteria: Baseline
--> Logs:

Inputs may not be compatible for simulation. Test results might not be acci
--> Simulink Test Manager Results:

Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite 1/Itera

Verification failed in fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter S

Failed criteria: Baseline
--> Logs:

Inputs may not be compatible for simulation. Test results might not be acci
--> Simulink Test Manager Results:

Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite 1/Itera

Verification failed in fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Si

Failed criteria: Baseline
--> Logs:

Inputs may not be compatible for simulation. Test results might not be acci
--> Simulink Test Manager Results:

Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite 1/Itera

Done fl4ParameterSweepTest > New Test Suite 1

6-113

6 Test Manager Test Cases

Failure Summary:

Name

fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedItera

fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedItera

9. Display the results from the TAP file.

disp(fileread(tapFile))

TAP version 13

1.
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

.25
1 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
2 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
3 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
4 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
5 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
6 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
7 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
8 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
9 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
10 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
11 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
12 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
13 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
14 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
15 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
16 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
17 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
18 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
not ok 19 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(Scripte
Event:
Event Name: 'VerificationFailed'

6-114

Event Location: 'fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter
Framework Diagnostic: |
Failed criteria: Baseline
--> Logs:
Inputs may not be compatible for simulation. Test results might no
--> Simulink Test Manager Results:

See Also

Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite

ok 20 - fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter Sweep(ScriptedIte
ok 21 - fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter Sweep(ScriptedIte
ok 22 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(ScriptedIte
ok 23 - fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter Sweep(ScriptedIte
not ok 24 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(Scripte
Event:
Event Name: 'VerificationFailed'
Event Location: 'fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter
Framework Diagnostic: |
Failed criteria: Baseline
--> Logs:
Inputs may not be compatible for simulation. Test results might no
--> Simulink Test Manager Results:
Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite

not ok 25 - fl4ParameterSweepTest > New Test Suite 1/Iterations Parameter Sweep(Scripte
Event:
Event Name: 'VerificationFailed'
Event Location: 'fl4ParameterSweepTest > New Test Suite 1l/Iterations Parameter
Framework Diagnostic: |
Failed criteria: Baseline
--> Logs:
Inputs may not be compatible for simulation. Test results might no
--> Simulink Test Manager Results:
Results: 2018-Feb-26 19:37:54/fl4ParameterSweepTest/New Test Suite

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

close system('sltestFl4ParameterSweep',0)

See Also

Test | TestResult | TestRunner | TestSuite |
matlab.unittest.plugins.TAPPlugin | sltest.plugins.ModelCoveragePlugin
| sltest.plugins.coverage.CoverageMetrics

6-115

6 Test Manager Test Cases

Related Examples
. “Run Tests for Various Workflows” (MATLAB)

6-116

Filter Test Execution and Results

Filter Test Execution and Results

In this section...
“Add Tags” on page 6-117
“Filter Tests and Results” on page 6-117

“Run Filtered Tests” on page 6-117

You can run a subset of tests or view a subset of test results by filtering test tags. Tags are
a property of the test case, test suite, or test file.

Add Tags

Add comma-separated tags to the Tags section in the Test Browser. Tags cannot contain
spaces; spaces are corrected to commas.

* TAGS

safety, interface

Filter Tests and Results

In the text box at the top of the Test Browser or Results and Artifacts pane, filter tests
by entering tag: idl, id2, ... where idl and id2 are example test tags. Enter
multiple tags separated by commas to return tests containing any tag in the list.

tag: interface, usahility
= = zltestProjectorCirTests®
d Model haseline tests
|E| Reg_scenario_1

|E| Redq_scenatio_2

Run Filtered Tests

To run a subset of tests

6-117

6 Test Manager Test Cases

1 Filter the tests using tags.
2 In the toolstrip, click the down arrow below Run and select Run Filtered.

6-118

Test Manager Results and Reports

* “View Test Case Results” on page 7-2
» “Export Test Results and Generate Reports” on page 7-9
* “Customize Test Reports” on page 7-14
* “Append Code to a Test Report” on page 7-20
“Results Sections” on page 7-23

7 Test Manager Results and Reports

View Test Case Results

In this section...

“View Results Summary” on page 7-2

“Visualize Test Case Simulation Output and Criteria” on page 7-4

After a test case has finished running in the Test Manager, the test case result becomes
available in the Results and Artifacts pane. Test results are organized in the same
hierarchy as the test file, test suite, and test cases that were run from the Test Browser
pane. In addition, the Results and Artifacts pane shows the criteria results and
simulation output, if applicable to the test case.

REEGCEE Results and Artifacts Results and Artifacts

4 [5] TestFile

= Test Suite

7-2

<

| 5]

v Results: 2016-Feb-23 14:55:55 10 10

B Basel;mm,x’ v [=] Test File 1@ 10
[£) Simulation Testcase\:] Test Suite 19 10
v || Baseline Test Case o

» [zl Baseline Criteria Result [x)
» AJ Sim Output (sldemo_absbrake : normal)

v |£] Simulation Test Case [
» A Sim Output (sldemo_absbrake : normal)

View Results Summary

The test case results tab gives a high-level summary and other information about an
individual test case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

Results and Artifacts

2 Double-click a test case result.

View Test Case Results

NAME STATUS
« Results: 2016-Feb-23 14:55:55 1s 10
~ [=] Test File 1& 10
- [Test Suite 1s 10

~ 5] Baseline Test Case (]

v [[z] Baseline Criteria Result o

A tab opens containing the test case results information.

7 Test Manager Results and Reports

Baseline Test Case x

* SUMMARY
Mame Beeeline Test Casze
Outcome 10
Start Time 02/23/2016 14:55:55
End Time 02232016 14.55:56
Type Baseline Test
Test File Location C\MATLAB\Test File.midat:
Test Case Definition A
Rerun Test Case [,>
Baseline File CAMATLABYest_capture.mat
Cause of Failure Criteria evalu ation resulted in failure.

» Simulation Metadata
*~ TEST REQUIREMENTS
r ITERATION SETTINGS
~ERRORS

~ LOGS

L L

* DESCRIPTION

Visualize Test Case Simulation Output and Criteria

You can view signal data from simulation output or comparisons of signal data used in
baseline or equivalence criteria.

To view simulation output from a test case:

View Test Case Results

1
2
3

Select the Results and Artifacts pane.
Expand the Sim OQutput section of the test case result.
Select the check box of signals you want to plot.

 [lz| Baseline Criteria Result
) yout Ww
| youtVs

| yout.Sd

o 8 8 0 9

) slp
~ Pu| Sim Qutput (sldemo_absbrake : normal)
¥ yout Ww —
¥ youtVs —
yout.Sd

Slp —

The Visualize tab appears and plots the signals.

7-5

7 Test Manager Results and Reports

W yout\Ww M youtVs

B85

60

55

50

45

40

o 1 2 3 4 5 8 T 8 e 10 11 12 13 14

To view equivalence or baseline criteria comparisons:

Select the Results and Artifacts pane.

2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of
the test case result.

3 Select the option button of the signal comparison you want to plot.

View Test Case Results

~ [lz| Baseline Criteria Result
® yout Ww
) youtVs

) yout.Sd

0 8 8 0 9

O slp
- W Sim Qutput (sldemo_absbrake : normal)
yout. Ww —
yout. Vs

yout. 5d —

slp

The Comparison tab appears and plots the signal comparison.

7-7

7 Test Manager Results and Reports

T0

80

40

Y

o

W yout\Ww (Baseline) W youtWw (Compare To)

. v
[} 1 2 3 4 5 [7] [10 11 12 13 14
W Difference M Tolerance
\ % |
V '
[} 1 2 3 4 5 a 7 8] 10 11 12 13 14

To see an example of creating a test case and viewing the results, see “Test Model Output
Against a Baseline” on page 6-9.

Export Test Results and Generate Reports

Export Test Results and Generate Reports

In this section...

“Export Results” on page 7-9
“Create a Test Results Report” on page 7-10
“Save Reporting Options with a Test File” on page 7-10

“Generate Reports Using Templates” on page 7-11

Once you have run test cases and generated test results, you can export results and
generate reports. Test case results appear in the Results and Artifacts pane.

Export Results

Test results are saved separately from the test file. To save results, select the result in the
Results and Artifacts pane, and click Export on the toolstrip.

* Select complete result sets to export to a MATLAB data export file (.mldatx).

4 Results : 2015-Jan-16 11:18:26 19
4 |=| Slip Baseline Test]
b L=l Baseline Criteria Result]

v Pul Sim Output (sldemo_absbrake -

» Select criteria comparisons or simulation output to export signal data to the base
workspace or to a MAT-ile.

4 Results : 2015-Jan-16 11:18:26 16
4 =] Slip Baseline Test %]
b izl Baseline Criteria Result L]

v Pul Sim Output (sldemo_absbrake -

7 Test Manager Results and Reports

7-10

Create a Test Results Report

Result reports contain report overview information, the test environment, results
summaries with test outcomes, comparison criteria plots, and simulation output plots. You
can customize the information included in the report, and you can save the report in three
different file formats: ZIP (HTML), DOCX, and PDF.

1 In the Results and Artifacts pane, select results for a test file, test suite, or test
case.

Note You can create a report from multiple result sets, but you cannot create a
report from multiple test files, test suites, or test cases within results sets.

From the toolstrip, click Report.

Select the options to specify report contents.
Set File Format to the output format you want.
Click Create.

gua A W N

Save Reporting Options with a Test File

You can generate a report every time you run a test case in a test file, using the same
report settings each time. To generate a report each time you run the test, set options
under Test File Options. These settings are saved with the test file.

1 In the Test Browser pane, select the test file whose report options you want to set.

2 Under Test File Options, select Generate report after execution. The section
expands, displaying the same report options you can set using the dialog box.

3 Set the options. To include figures generated by callbacks or custom criteria, select
MATLAB figures. For more information, see “Create, Store, and Open MATLAB
Figures” on page 6-104.

4 Store the settings with your test file. Save the test file.

5 Ifyou want to generate a report using these settings, select the test file and run the
test.

Export Test Results and Generate Reports

Generate Reports Using Templates
Microsoft Word Format

If you have a MATLAB Report Generator™ license, you can create reports from a
Microsoft Word template. The report can be a Microsoft Word or PDF document.

The report generator in Simulink Test fills information into rich text content controls in
your Microsoft Word template document. For more information on how to use rich text
content controls or customize part templates, see the MATLAB Report Generator
documentation, such as “Add Holes in a Microsoft Word Template” (MATLAB Report
Generator).

For a sample template, go to the path:

cd(matlabroot);
cd('help\toolbox\sltest\examples');

In the examples folder, open the file Template.dotx.

In the Microsoft Word template, you can add rich text content controls. Each Simulink
Test report section can be inserted into the rich text content controls. The control names
are:

* ChapterTitle — report title

* ChapterTestPlatform — version of MATLAB used to execute tests

* ChapterTOC — test results table of contents

* ChapterBody — test results

For example, the chapter title rich text content control appears in the Microsoft Word
template as:

ChapterTitle| Click here to enter text. | ChapterTite

To change the control name, right-click the rich text content control and select
Properties. Specify the control name, ChapterTitle or other name, in the Title and
Tag field.

7-11

7 Test Manager Results and Reports

7-12

Content Control Properties @
General

Title: ChapterTitle

Tag: ChapterTitle

Show as: |Bounding BoxEl

Colon & -

|:| Use a style to format text typed into the empty control
Style: |[Default Paragraph Font

|:| Bemove content control when contents are edited
Locking

|:| Content control cannot be deleted
|:| Contents cannot be edited

OK] I Cancel

To generate a report from the Test Manager using a Microsoft Word template:

In the Test Manager, select the Results and Artifacts pane.

Select results for a test file, test suite, or test case in the Results and Artifacts
pane.

N

From the toolstrip, click Report.

Select the report options.

Select DOCX or PDF for the File Format.

Specify the full path and file name of your Microsoft Word template.
Click Create.

N o o1 AW

PDF or HTML Formats

If you have a MATLAB Report Generator license, you can create reports from a PDF or
HTML template, using a PDFTX or HTMTX file. To generate a report from the Test
Manager using a PDF or HTML template:

See Also

In the Test Manager, select the Results and Artifacts pane.

2 Select results for a test file, test suite, or test case in the Results and Artifacts
pane.

3 From the toolstrip, click Report.

4 Select the report options.

5 Select ZIP or PDF for the File Format. Selecting ZIP generates an HTML report.

6 Specify the full path and file name of your template. For PDE use a PDFTX file. For

HTML, use an HTMTX file. For more information on creating templates, see
“Templates” (MATLAB Report Generator).

7 Click Create.

See Also
Related Examples

. “Templates” (MATLAB Report Generator)
. “Create, Store, and Open MATLAB Figures” on page 6-104

7-13

7 Test Manager Results and Reports

Customize Test Reports

7-14

In this section...

“Inherit the Report Class” on page 7-14

“Method Hierarchy” on page 7-14

“Modify the Class” on page 7-16

“Generate a Report Using the Custom Class” on page 7-18

You can choose how to format and aggregate test results by customizing reports. Use the
sltest.testmanager.TestResultReport class to create a subclass and then use the
properties and methods to customize how the Test Manager generates the results report.
You can change font styles, add plots, organize results into tables, include model images,
and more. Using the custom class, requires a MATLAB Report Generator license.

Inherit the Report Class

To customize the generated report, you must inherit from the
sltest.testmanager.TestResultReport class. After you inherit from the class, you
can modify the properties and methods. To inherit the class, add the class definition
section to a new or existing MATLAB script. The subclass is your custom class name, and
the superclass that you inherit from is sltest.testmanager.TestResultReport. For
more information about creating subclasses, see “Design Subclass Constructors”
(MATLAB). Then, add code to the inherited class or methods to create your
customizations.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport

Report customization code here

o® o o°

end

Method Hierarchy

When you create the subclass, the derived class inherits methods from the
sltest.testmanager.TestResultReport class. The body of the report is separated
into three main groups: the result set block, the test suite result block, and the test case
result block.

Customize Test Reports

layoutReport

¥ t -
{ addTitlePage] [addReponTOC] [addﬂeportBodv]

pal . Ty
[genResultSetBlock J [genTestSuiteResultBlock] [genTestCaseResultBlock J

The result set block contains the result set table, the coverage table, and links to the table
of contents.

genResultSetBlock

=

¥ - L1 _)
[genTableRowsForResultMetalnfn} [genCoverageTable] [genHyperLinkToToC]

The test suite result block contains the test suite results table, the coverage table,
requirements links, and links to the table of contents.

genTestSuiteResultBlock

A

~

Fa y ™
{gen MetadataBlockForTestResu It] {genCoverageTable } [gen vaerLinktoTDC]

/ ~
' 1

{genTableRowchrResultMetalnfo] [genRequirementLinksTable]

The test case result block contains the test case and test iterations results table, the
coverage table, requirements links, signal output plots, comparison plots, test case
settings, and links to the table of contents.

genTestCaseResultBlock

— N

1 ¥

¥ Y
[genMe‘adataBIockForTestResu\t] [genCoverageTable] [genHyperLinkToToC] [genRunB\ockForTestCaseResult]

N
/)

~ - —— -

genTableRowsForResultMetalnfo | " | genBaselineinfoTable e -
genlterationSettingTable | | genHyperLinktoToC |/ [\ \

) / AN

x + Ve \ N
[genRequirementLinksTable J [plotOneSignalToFile] \ - w.\

genSignalSummaryTable ||
|
genParameterOverridesTable | |
genSimulationConfigurationTable

7-15

7 Test Manager Results and Reports

Modify the Class

To insert your own report content or change the layout of the generated report, modify
the inherited class methods. For general information about modifying methods, see
“Modify Superclass Methods” (MATLAB).

A simple modification to the generated report could be to add some text to the title page.
The method used here is addTit1lePage.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
methods
function this = CustomReport(resultObjects, reportFilePath)
this@sltest.testmanager.TestResultReport(resultObjects,...
reportFilePath);
end
end

methods (Access=protected)
function addTitlePage(obj)
import mlreportgen.dom.*;

% Add a custom message
label = Text('Some custom content can be added here');
append(obj.TitlePart, label);

% Call the superclass method to get the default behavior
addTitlePage@sltest.testmanager.TestResultReport(obj);
end
end
end

Click here for a code file of this example.

A more complex modification of the generated report is to include a snapshot of the
model that was tested.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
methods
function this = CustomReport(resultObjects, reportFilePath)
this@sltest.testmanager.TestResultReport(resultObjects, reportFilePath);
end
end

7-16

matlab:open(fullfile(docroot, 'toolbox', 'sltest', 'examples', 'CustomReportText.m'))

Customize Test Reports

methods (Access=protected)
% Method to customize test case/iteration result section in the report
function docPart = genTestCaseResultBlock(obj,result)

% result: A structure containing test case or iteration result
import mlreportgen.dom.*;

% Call the superclass method to get the default behavior
docPart = genTestCaseResultBlock@sltest.testmanager.TestResultReport(...
obj,result);

% Get the test case result data for putting in the report
tcrObj = result.Data;

% Insert model screenshot at the test case result level
if isa(tcrObj, 'sltest.testmanager.TestCaseResult')

% Initialize model name
modelName = '';

Check in the test case result if it has model information. If
not, it means there were iterations in the test case or a
model was not used.

testSimMetaData = tcrObj.SimulationMetaData;

o® o° o°

if (~isempty(testSimMetaData))
modelName = testSimMetaData.modelName;
end

% Get iteration results
iterResults = getIterationResults(tcrObj);

% Get the model name in case test case had iterations
if (~isempty(iterResults))

modelName = iterResults(1l).SimulationMetaData.modelName;
end

% Insert model snapshot. This will not work for harnesses. With
% minimal changes we can also open the harness used for
% testing.
if (~isempty(modelName))
try
open_system(modelName) ;
snapObj = SLPrint.Snapshot;

7-17

7 Test Manager Results and Reports

7-18

snapObj.Target modelName;
snapObj.Format 'png’;
snapObj.FileName = fullfile(tempdir,modelName);
if exist(snap0Obj.FileName, 'file')

delete(snapObj.FileName);
end
snapObj.snap;
outputFileName
outputFileName

snap0Obj.FileName;
[outputFileName '.png'];

para = sltest.testmanager.ReportUtility.genImageParagraph(...

outputFileName, ...
'5.2in','3.7in");
append(docPart,para);
catch
end
end
end
end
end
end

Click here for a code file of this example.

Generate a Report Using the Custom Class

After you customize the class and methods, use the sltest.testmanager.report to
generate the report. You must use the 'CustomReportClass' name-value pair for the
custom class, specified as a string. For example:

% Generate the result set from imported data
result = sltest.testmanager.importResults('demoResults.mldatx"');

% Specify the report file name and path
filePath = 'testreport.zip';

% Generate the report using the custom class
sltest.testmanager.report(result, filePath,
"Author', 'MathWorks', ...
'Title', 'Test', ...
'"IncludeMLVersion', true,...
'IncludeTestResults',int32(0), ...
'CustomReportClass', 'CustomReport', ...
"LaunchReport', true);

matlab:open(fullfile(docroot, 'toolbox', 'sltest', 'examples', 'CustomReportSnapshot.m'))

See Also

Alternatively, you can create your custom report using the Test Manager report dialog
box. Select a test result, click the Report button on the toolstrip, and specify the custom
report class in the Create Test Result Report dialog box. For the Test Manager to use the
custom report class, the class must be on the MATLAB path.

See Also

sltest.testmanager.TestResultReport | sltest.testmanager.report

Related Examples
. “Design Subclass Constructors” (MATLAB)

7-19

7 Test Manager Results and Reports

Append Code to a Test Report

7-20

This example shows how to use a customization class to include code in your test report.
When testing systems that include handwritten code, reviewing the code itself can be part
of reviewing the test results. Including the code in the test report allows you use a single
document.

The example model includes handwritten C code using an S-Function builder block. The
block is a component of a cruise control system; functionally, it disregards simultaneous
pressing of the Accel/Res switch and the Coast/Set switch.

This example requires Simulink® Report Generator™ and Microsoft® Windows.

Navigate to the Example Folder

Before running this example, navigate to the example folder and set the filenames.
cd(fullfile(matlabroot, 'examples', 'simulinktest'))

className = 'textAppendReport';

resultsFile = 'DoublePressSfcnSimTestResults';

filePath = 'textAppendedReport.zip';

Report Customization Class

The report customization class textAppendReport.m appends the S-Function wrapper
code to the end of the report body.

open(className)

Load the Test Results and Create the Test Report

1. Load the test results file.

result = sltest.testmanager.importResults(resultsFile);
2. Create the test report using the customization.

sltest.testmanager.report(result,filePath, 'CustomReportClass', className,...
'IncludeTestResults',0)

3. The report appends the S-Function wrapper code:

Append Code to a Test Report

S-Function Wrapper

It
* Include Files
x
3__'
#if defined MATLAB MEX FILE)
#include "tmwtypes h”
#include "simstruc_types.h”
Zelse
#include "rtwtypes h"
Zendif

[* 0500%-SFUNWIZ wrapper_includes Changes BEGIN --- EDIT HERE TO END */
#include <math h=
#include "RejectDoublePress h"
[* 80 %-SFUNWIZ _wrapper_includes Changes END --- EDIT HERE TO _BEGIN #*/
#define u_width 1
#define v_width 1
[
* Create external references here.
E
®/
[* 0505%-SFUNWIZ _wrapper_externs Changes BEGIN --- EDIT HERE TO _END */
/* extern double func(double a); */
[* 0505%-SFUNWIZ_wrapper_externs_Changes END - EDIT HERE TO _BEGIN */

I
* Output functions
E
)
void RejectDoublePress _sfun Outputs wrapper(const boolean T *AccelResSwin
const boolean T *CoastSetSwin,
boolean_T *AccelResSwOut. 721
boolean T *CoastSetSwOut)

7 Test Manager Results and Reports

For more information on report customization, see Customize Generated Reports

sltest.testmanager.clearResults;
sltest.testmanager.close;

7-22

matlab:helpview(fullfile(docroot,'sltest','ug','generate-custom-reports.html'))

Results Sections

Results Sections

In this section...

“Summary” on page 7-24

“Test Requirements” on page 7-24
“Iteration Settings” on page 7-25
“Errors” on page 7-25

“Logs” on page 7-25

“Description” on page 7-25
“Parameter Overrides” on page 7-25
“Coverage Results” on page 7-25

Double-click a test case results in the Results and Artifacts pane to open a results tab
and view the test case result sections. A baseline test case result is shown as an example.

7-23

7 Test Manager Results and Reports

|z Baseline Test Case

« SURMMARY
Mame Baseline Test Case
Cutcome 18
Start Time 01052016 21:38:14
End Time 01052016 21:38:18
Type Baseline Test
Test File Location CAMATLABTest File.midat:
Test Case Definition A
Rerun Test Case [>

¥ Simmulation Metadata
» TEST REQUIREMEMNTS
b ITERATION SETTIMNGS
» ERRCRE
P LOGE
P DESCRIPTION

P COVERAGE RESLILTS

Summary

The Summary section includes the basic test information and the test outcome. For more
information about the simulation, toggle the Simulation Metadata arrow to expand the
section.

Test Requirements

A list of test requirements linked to the test case. See “Requirements” on page 6-80 for
more information on linking requirements to test cases.

7-24

Results Sections

Iteration Settings

If you are using iterations to run test cases, then this section appears in the results. For
more information about test iterations, see “Run Combinations of Tests Using Iterations”
on page 6-52.

Errors
This section displays simulation errors captured from the Simulink Diagnostic Viewer.

Errors from incorrect information defined in the test case and callback scripts are also
shown here.

Logs

This section displays simulation warnings captured from the Simulink Diagnostic Viewer.

Description

You can include notes about the test results here. These notes are saved with the results.

Parameter Overrides
A list of parameter overrides specified in the test case under Parameter Overrides. If

parameter overrides are not specified, then this section is not shown in the results
summary.

Coverage Results
If you collect coverage in your test, then the coverage results appear in this section.

Coverage results are aggregated at the test file, test suite, and test file level. For more
information about coverage, see “Collect Coverage in Tests” on page 6-63.

7-25

Real-Time Testing

* “Test Models in Real Time” on page 8-2
* “Reuse Desktop Test Cases for Real-Time Testing” on page 8-13

8 RealTime Testing

Test Models in Real Time

8-2

In this section...

“Overall Workflow” on page 8-2

“Real-Time Testing Considerations” on page 8-3
“Complete Basic Model Testing” on page 8-3

“Set up the Target Computer” on page 8-3
“Configure the Model or Test Harness” on page 8-4
“Add Test Cases for Real-Time Testing” on page 8-6

“Assess Real-Time Execution Using verify Statements” on page 8-11

You can test your system in environments that resemble your application. You begin with
model simulation on a development computer, then use software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulations. Real-time testing executes an application on a
standalone target computer that can connect to a physical system. Real-time testing can
include effects of timing, signal interfaces, system response, and production hardware.

Real-time testing includes:

* Rapid prototyping, which tests a system on a standalone target connected to plant
hardware. You verify the real-time tests against requirements and model results. Using
rapid prototyping results, you can change your model and update your requirements,
after which you retest on the standalone target.

* Hardware-in-the-loop (HIL), which tests a system that has passed several stages of
verification, typically SIL and PIL simulations.

Overall Workflow

This example workflow describes the major steps of creating and executing a real-time
test:

1 Create test cases that verify the model against requirements. Run the model
simulation tests and save the baseline data.
Set up the real-time target computer.

Create test harnesses for real-time testing, or reuse model simulation test harnesses.
In Test Sequence or Test Assessment blocks, verify statements assess the real-time

Test Models in Real Time

execution. In the test harnesses, use target and host scopes to display signals during
execution.

In the Test Manager, create real-time test cases.

For the real-time test cases, configure target settings, inputs, callbacks, and
iterations. Add baseline or equivalence criteria.

Execute the real-time tests.
Analyze the results in the Test Manager. Report the results.

Real-Time Testing Considerations

Baseline or equivalence comparisons can fail because of missing data or time-shifted
data from the real-time target computer. When investigating real-time test failures,
look for time shifts or missing data points.

You cannot override the real-time execution sample time for applications built from
models containing a Test Sequence block. The code generated for the Test Sequence
block contains a hard-coded sample time. Overriding the target computer sample time
can produce unexpected results.

Your target computer must have a file system to use verify statements and test case
logging.

Complete Basic Model Testing

Real-time testing often takes longer than comparative model testing, especially if you
execute a suite of real-time tests that cover several scenarios. Before executing real-time
tests, complete requirements-based testing using desktop simulation. Using the desktop
simulation results:

Debug your model or make design changes that meet requirements.

Debug your test sequence. Use the debugging features in the test sequence editor. See
“Debug a Test Sequence” on page 3-66.

Update your requirements and add corresponding test cases.

Set up the Target Computer

Real-time testing requires a standalone target computer. Simulink Test only supports
target computers running Simulink Real-Time™. For more information, see:

8-3

8 RealTime Testing

8-4

* “Development Computer Setup and Configuration” (Simulink Real-Time)

* “Troubleshooting in Simulink Real-Time” (Simulink Real-Time)

Configure the Model or Test Harness
Real-time applications require specific configuration parameters and signal properties.
Code Generation

A real-time test case requires a real-time system target file. In the model or harness
configuration parameters, in the Code Generation pane, set the System target file to
slrt.tlc to generate system target code.

If your model requires a different system target file, you can set the parameter using a
test case or test suite callback. After the real-time test executes, set the parameter to its
original setting with a cleanup callback. For example, this callback opens the model and
sets the system target file parameter to slrt.t1lc for the model
sltestProjectorController.

open_system(fullfile(matlabroot, 'toolbox"', 'simulinktest’,...

'simulinktestdemos', 'sltestProjectorController'));
set param('sltestProjectorController', 'SystemTargetFile', 'slrt.tlc');

Data Import/Export Format

Models must use a data format other than dataset. To set the data format:

1 Open the configuration parameters.
2 Select the Data Import/Export pane.
3 Select the Format.

Log Signals from Real-Time Execution

To configure your signals of interest for real-time testing:

* Enable signal logging in the Configuration Parameters, in the Data Import/Export
pane.

* Connect signals to Scope blocks from the Simulink Real-Time block library. Set the
Scope type property to File.

Test Models in Real Time

* Name each signal of interest using the signal properties. Unnamed signals can be
assigned a default name which does not match the name of the baseline or

equivalence signal.
In this example test harness, the logged signals:

* Have explicit names.
» Use file scopes to return signal data to the Test Manager.
» Use target scopes to display data on the target computer.

Famln

-‘anspoe

LampOn

an_of

Mor o

e njstorCon ol

on_arr

Toro)

Test Sequence

FanCn

FanSpesd

Lampon

_‘ra 1 Soope
Flie So0p: n?d :
ol F 2 | .

s Soope 3

B
e Target Scone
— 5
oL o

View Signals During Real-Time Execution

Soope
Target Scope
N ‘Ilesoope | Soope s
Soopel
T
=
- G
fan_speed
T
CLE
FanOn
FanZze
LampDin2
'_013
Test Amse sament

To display signals on the target computer during real-time execution, add target scopes to
your test harness. To display signals in the Simulink Real-Time Explorer, add host scopes.
This test harness includes both target and host scopes for signal visualization. See Scope.

8 RealTime Testing

Host Scope
Id: 3

Host Scope

h

Y

Target Scope
Id: 2

Target Scope

File Scope
Id: 1

File Scope

Y

On_normal_tEmp
on offf— = on_off

T
checledOnOF <>

L~
- Tproj f———— Tproj chik_on_off

chk_on_off

h J

Harness Inputs OniOff Chedk

Add Test Cases for Real-Time Testing

Use the Test Manager to create real-time test cases. In the toolstrip, click New > Real-
Time Test.

Test Type

You can select a baseline, equivalence, or simulation real-time test. For simulation test
types, verify statements serve as pass/fail criteria in the test results. For equivalence
and baseline test types, the equivalence or baseline criteria also serve as pass/fail
criteria.

* Baseline — Compares the signal data returned from the target computer to the
baseline in the test case. To compare a real-time execution result to a model
simulation result, add the model baseline result to the real-time test case and apply
optional tolerances to the signals.

* Equivalence — Compares signal data from a simulation and a real-time test, or two
real-time tests. To run a real-time test on the target computer, then compare results to
a model simulation:

* Select Simulation 1 on target.

8-6

Test Models in Real Time

* C(Clear Simulation 2 on target.
The test case displays two simulation sections, Simulation 1 and Simulation 2.

Comparing two real-time tests is similar, except that you select both simulations on
target. In the Equivalence Criteria section, you can capture logged signals from the
simulation and apply tolerances for pass/fail analysis.

Simulation: Assesses the test result using only verify statements and real-time
execution. If no verify statements fail, and the real-time test executes, the test case
passes.

Load Application From

Using this option, specify how you want to load the real-time application. The real-time
application is a DLM file built from your model or test harness. You can load the
application from:

Model — Choose Model if you are running the real-time test for the first time, or your
model changed since the last real-time execution. Model typically takes the longest
because it includes model build and download. Model loads the application from the
model, builds the real-time application, downloads it to the target computer, and
executes it on the target computer.

Target Application — Choose Target Application to send the target application
from the host to a target computer, and execute the application. Target
Application can be useful if you want to load an already-built application on
multiple targets.

Target Computer — This option executes an application that is already loaded on the
real-time target computer. You can update the parameters in the test case and execute
using Target Computer.

This table summarizes which steps and callbacks execute for each option.

Test Case Load Application From
Execution Step Model Target Application | Target Computer
(first to last) ode arget Applicatio arget Compute
Executes pre-load Yes Yes Yes
callback
Loads Simulink Yes No No
model

8 RealTime Testing

8-8

Test Case Load Application From
Execution Step Model Target Application | Target Computer
(first to last) - PP - 5
Executes post-load |Yes No No
callback
Sets Signal Builder |Yes No No
group
Builds DLM from Yes No No
model
Downloads DLM to |Yes Yes No
target computer
Sets runtime Yes Yes Yes
parameters
Executes pre-start |Yes Yes Yes
real-time callback
Executes real-time |Yes Yes Yes
application
Executes cleanup Yes Yes Yes
callback

Model

Select the model from which to generate the real-time application.

Test Harness

If you use a test harness to generate the real-time application, select the test harness.

Simulation Settings Overrides

For real-time tests, you can override the simulation stop time, which can be useful in
debugging a real-time test failure. Consider a 60-second test that returns a verify
statement failure at 15 seconds due to a bug in the model. After debugging your model,
you execute the real-time test to verify the fix. You can override the stop time to terminate
the execution at 20 seconds, which reduces the time it takes to verify the fix.

Test Models in Real Time

Callbacks

Real-time tests offer a Pre-start real-time application callback which executes
commands just before the application executes on the target computer. Real-time test
callbacks execute in a sequence along with the model load, build, download, and execute
steps. Callbacks and step execution depends on how the test case loads the application.

Sequence

Load application
from:

Model

Load application
from:

Target application

Load application
from:

Target computer

Executes first

Preload callback

Preload callback

Preload callback

Post-load callback

Pre-start real-time
callback

Pre-start real-time
callback

Pre-start real-time
callback

Executes last

Cleanup callback

Cleanup callback

Cleanup callback

Iterations

You can execute iterations in real-time tests. Iterations are convenient for executing real-
time tests that sweep through parameter values or Signal Builder groups. Results appear
grouped by iteration. For more information on setting up iterations, see “Run
Combinations of Tests Using Iterations” on page 6-52. You can create:

» Tabled iterations from a parameter set — Define several parameter sets in the
Parameter Overrides section of the test case. Under Iterations > Table Iterations,
click Auto Generate and select Parameter Set.

» Tabled iterations from signal builder groups — If your model or test harness uses a
signal builder input, under Iterations > Table Iterations, click Auto Generate and
select Signal Builder Group. If you use a signal builder group, load the application
from the model.

» Scripted iterations — Use scripts to iterate using model variables or parameters. For
example, in the model sltestRealTimeOscillatorTestExample, the
SettlingTest harness uses a Test Sequence block to create a square wave test
signal for the oscillator system using the parameter frequency.

8-9

8 RealTime Testing

. Sl
v Ird:ll:'E

o
[

g
3

O Target Scope
Id: 2

Soopel

[

File Scops

L

Scope

L
[

Soopel

Ta Soony
rgﬁ}: 4 P

Soopel

Y slectRe allimeO scillabrlestExample

k4

] t

= owa o #{In1 Owtport "
in OSC_o

& - = Ouport

Test Sequance A

P t==t ot

~ief

TestAssessment

Symbols Step Transition Next Step
I Initialize 1. true step. 2 ¥

Output waveform = 0;

1. L waveform

step_2
Local waveform =square(et*frequency) 0.5 + 0.5;
Constant
Parameter
frequency

8-10

Test Models in Real Time

In the test file SettlingTestCases, the real-time test scripted iterations cover a

frequency sweep from 5 Hz to 35 Hz. The script iterates the value of frequency in
the Test Sequence block.

%% Iterate over frequencies to determine best oscillator settings

% Create parameter sets
freq = 5.0:1.0:35.0;

for i _iter = 1l:length(freq)
% Create iteration object
testItr = sltestiteration();

% Set parameters

setVariable(testItr, 'Name', 'frequency', 'Source', 'Test Sequence',...
'Value',freq(i_iter));

% Register iteration

addIteration(sltest testCase, testItr);
end

Assess Real-Time Execution Using verify Statements

In addition to baseline and equivalence signal comparisons, you can assess real-time test
execution using verify statements. A verify statement assesses a logical expression
and returns results to the Test Manager. Use verify inside a Test Sequence or Test
Assessment block. See “Run-Time Assessments” on page 3-45.

8-11

8 RealTime Testing

Results and Artifacts [Modelinlooptests » [H} StartPage x| Visualize x

A E \lr W Test Sequence/Check:Simulinkverify_sc4_on
AT B Test Sequence/Check2:Simulink:verify_sc4_off
B Test Assessment/GlobalAssess/OverheatCondition:Simulink:verify_overheat

~ [E] RTT req scenario 4

- [[&] Verify Statements
+| Test Sequence/Check:Simulin...
+ Test Sequence/Check2:Simuli...

Fa

Test Assessment/GlobalAsse

+ Test Assessment/GlobalAsse...

Test Assessment/GlobalAsse. .. S

0O & 8 0 00O O

Test Assessment/GlobalAsse...

» Sim Output (sltestProjectorController :)

PROPERTY WVALUE Untastad

Name M Test Assessment/GlobalAss... = o - 4 [5 10 12 14 16 ik}

See Also

Related Examples
. “Test Real-Time Application” (Simulink Real-Time)

8-12

Reuse Desktop Test Cases for Real-Time Testing

Reuse Desktop Test Cases for Real-Time Testing

Convert Desktop Test Cases to Real-Time

In the Test Manager, you can reuse test cases for real-time testing by converting desktop
test cases to real-time test cases. For convenience, data can be stored externally so that
each test case accesses common inputs and baseline data. The overall workflow is as
follows:

1 Create a baseline, equivalence, or simulation test case with external inputs. For
baseline tests, add baseline data from external files.

In the Test Manager, select the test case in the Test Browser.

Copy the test case. Right-click the test case and select Copy.

Paste the new test case into a test suite.

Rename the new test case.

Right-click the new test case, and select Convert to > Real-Time Test. For
equivalence tests, select which simulation (simulation 1 or simulation 2) to run in real
time.

Select the Target Computer and Load Application From options.

Ensure that the model settings are compatible with real-time test execution. For more
information, see “Development Computer Setup and Configuration” (Simulink Real-
Time).

ounhA,WN

o0 N

Use External Data for Real-Time Tests

You can simplify test input data management by defining the input data in an external
MAT or Excel file. Map the data to root inports in your model or test harness for desktop
simulation. When you convert the desktop simulation test case into a real-time test, the
test case uses the same inport mapping.

Using external data depends on how your test case loads the real-time application:
Load Real-Time Application from Model

If you are using external data for a real-time test, loading the real-time application from
the model gives you the option of using an Excel file, MAT file, or CSV file. The external
data is built into the application, and you can rerun the application from the target
application or target computer.

In the System Under Test section, set the application to load from Model. In the Inputs
section of the test case, click Add, and select an Excel file, MAT file, or CSV file. Map the

8-13

8 RealTime Testing

8-14

data to your model inports. For more information on input mapping, see “Use External
Inputs in Test Cases” on page 6-29.

Load Real-Time Application from Target Application or Target Computer

After running the test from the model, you can run the test from the target application or
target computer without recompiling. The application uses the input mapping from when
the test ran from the model.

You can map external data to a test case loaded from the target application or target
computer, without first running from the model. The external data must be in a MAT file,
in the same format used if the test is loaded from the model. In the System Under Test
section, select to load the application from the Target Applicationor Target
Computer. In the Inputs section, click Add and select a MAT file. The Input string is not
editable.

Example

This example shows a basic desktop test case reuse workflow using external input data
defined in an Excel file. You run the baseline test case on the desktop, update the baseline
data, convert a copy of the test case to a real-time test, then run the test case on a target
computer. This example runs only on Windows systems.

1 Open the test file.

tf = sltest.testmanager.TestFile(fullfile(matlabroot, 'examples’,...
'simulinktest', 'sltestTestCaseRealTimeReuseExample.mldatx'));
sltest.testmanager.load(tf.Name);

sltest.testmanager.view;

The test file runs a transmission shift controller algorithm through four iterations,
each corresponding to a different test scenario: passing, gradual acceleration, hard
braking, and coasting. There is baseline data associated with each scenario for the
signals vehicle speed and output torque.

Reuse Desktop Test Cases for Real-Time Testing

Test Browser |=| Baseline Test » [ffl startPage x
| » ITERATIOMS*
= =] sltesiTestGaseReallimeReuseExample®
= Test Suite * TABLE ITERATIONG®
D) zeo:le e | HantE SIGNAL BUILDER GROUP
+ Passing [Defauli] None
| GradualAceel (Dafaull] None
+ HardBrake [Defzuli]l None
+|Coast [Defzuli] None

Run the baseline test.

wWN

PARAVETER SET
[Defail None
[Defail None
[Defawil] None
[Defawil] None

EXTERNAL INFUT

BrakeThrottle_InputD..
BrakeThrottle_InputD..

BrakeThrottle_InputD
BrakeThrottle_InputD

BASELINE
baselinel.mat
baseline2.mat
baseline3 mat

baselined mat

Under the Baseline Criteria result, select output torque under the Passing result

to view the comparison. The Passing result fails due to transient signals that fall

outside the relative tolerance.

W unnamed {Baseline) M outputtorque (Compare To) m Tolerance

3

== Add o Delete

1000
500
i z 4 g g 10 12 14 16 1a 0 22 24 26 et a0
m Difference ® Tolerance
20
10 r
o M
i z 4 g g 10 12 14 16 1a 0 22 24 26 et a0

4 Assume that these transient signals are not significant, and update the baseline data:

1 Click Next Failure. The first failure region is bounded by data cursors.
2 Click Update Baseline + Update selected signal region, and confirm that you

want to overwrite the data.

8-15

8 RealTime Testing

3 Repeat this process for the other two failure regions.
5 Copy and convert the baseline test case to a real-time test:

1 In the Test Browser, right-click Baseline Test and select Copy.

2 Paste the new test case under the test suite.

3 Rename the new tests case RT Baseline Test.

4 Right-click RT Baseline Test and select Convert to > Real-Time Test.
6 Run the real-time test case:

1 Set the Target Computer.
2 Set the system under test to load from Model.

ROV Fosuits and Artifacts [l startPage £ comparison |=| RT Baseline Test

» SYSTEM UNDER TEST®

~ =] shestTestCaseRealTimeReuseExample®
- Test Suite Load Application Fram | model h

|E| Baseline Test

| RT Baseline Test Model: | sitestCarRaootinpart BhaaAC
=l

Target Computer. | SLRTLABTGTT -
» TEST HARMESS
» SIMULATION SETTINGS OVERRIDES
3 Runthe RT Baseline Test test case.
7 In this example, several of the scenarios fail due to timing impacts on the data
output. For example, in the HardBrake iteration, the vehicle speed output falls

outside the relative tolerance after the brake is applied. To resolve this failure, you
could:

* Increase the relative tolerance for the real-time test.
* Create a separate set of baseline data for the real-time test.

8-16

See Also

HAME
- |5] RT Baseline Test 1@ 3@
» [1] Coast (-]
» 1] GradualAccel (-]
- |I] HardBrake]
~ 5] Baseline Criteria Result [x]
® vehicle speed [}
) output targque <]
» U Baseling (baseline3. mat)
PROPERTY WBLUE
Mame || vehicle speed
Status <]
Ahsolute Tolerance a
Felative Tolerance 0.10%
Leading Tolerance 0

See Also

Related Examples

-

mstar‘tPage % |Z] RT Baseline Test

% [comparison

W vehicle speed (Baseling) Mvehicle speed (Compare To) W Tolerance

o 2 4 0 1z 19 18 12 20 22 24 26 28 a0
M Difference M Tolerance
0 2 4 0 12 14 18 1% 20 22 24 26 28 30

. “Test Real-Time Application” (Simulink Real-Time)

8-17

Verification and Validation

* “Test Model Against Requirements and Report Results” on page 9-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 9-6
* “Perform Functional Testing and Analyze Test Coverage” on page 9-9

* “Analyze Code and Test Software-in-the-Loop” on page 9-13

* “Module Verification and Testing Processor-in-the-Loop” on page 9-22

* “Test a Model in Real Time” on page 9-23

9 Verification and Validation

Test Model Against Requirements and Report Results

System
requirements

Requirements Overview

Requirements are the basis for your system architecture, algorithm, and test plan.
Traceability between requirements documents, model, code, and tests helps you
document relationships, manage design changes, and interpret test results. Required
model properties and test objectives enable targeted design analysis and test case
generation for specific scenarios. You can evaluate your design and identify incomplete or
missing requirements with ad-hoc testing, using simulated user interfaces for your model.
Also, you can use rapid prototyping to validate requirements, and connect to physical or
simulated environments to test your algorithm. Update the design, adding requirements
and requirements links as necessary.

Functional

requirements - Update requirements

|

|

! e Traceability - - -

| | |

i Traceability i

i i i

| | |

Develop Develop
Develop test

specification / = detailed = casss = Run tests - Report results
architecture model

9-2

f |

Refine

Test a Cruise Control Safety Requirement

This example shows a requirements-based testing workflow for a cruise control model.
You start with a model that has traceability to an external requirements document. You
add a test to evaluate two safety requirements, checking that the cruise control
disengages when the system reaches certain conditions. You add traceability to this test,
run the test, and report the results.

1 Create a copy of the project in a working folder. Enter

Test Model Against Requirements and Report Results

slVerificationCruiseStart

Open the model and the test harness. On the command line, enter

open_system simulinkCruiseAddRegExample
sltest.harness.open('simulinkCruiseAddRegExample', 'SafetyTest Harnessl')
Open the Test Sequence block.

* The BrakeTest sequence tests that the system disengages when the brake pedal
is pressed. It includes a verify statement

verify(engaged == false,...
'verify:brake', ...
'system must disengage when brake applied')

* The LimitTest sequence tests that the system disengages when the speed
exceeds a limit. It includes a verify statement

verify(engaged == false,...
'verify:limit', ...
'system must disengage when limit exceeded')

Open the requirements document. In the Simulink Project window, expand the
documents folder and open simulinkCruiseChartReqs.docx.

Add links between the test steps and the requirements document.

a In the requirements document, highlight item 3.1, “Vehicle braking will
transition system to disengaged (inactive) when engaged (active)”

b With item 3.1 highlighted, in the test sequence, right-click the BrakeTest step.
Select Requirements traceability > Link to Selection in Word.

¢ In the requirements document, highlight item 3.4, “Transition to disengaged
(inactive) when vehicle speed is outside the limits of 20 mph to 90 mph”

d With item 3.4 highlighted, in the test sequence, right-click the LimitTest step.
Select Requirements traceability > Link to Selection in Word.

e Save the requirements document and the model.

Create a test case in the Test Manager, and link the test case to the requirements
section.

a Open the Test Manager. In the Simulink menu, select Analysis > Test Manager.

b In the Test Manager toolstrip, click New > Test File. Select the tests folder in
the project, and enter a name for the test file. Click Save.

A new baseline test is created.

9-3

Verification and Validation

9-4

Under System Under Test, in the Model field, click the button & to use the
current model. The field displays the model name.

Expand the Test Harness section. From the drop-down menu, select the test
harness name.

In the requirements document, highlight section 3.1.

In the test case, expand the Requirements section. Click the arrow next to the
Add button and select Link to Selection in Word.

Use the same process to link the test case to section 3.4 in the requirements
document.

Highlight the test case. In the Test Manager toolstrip, click Run.

When the test finishes, expand the Verify Statements results. The results show that
both assessments pass, and the plot shows the detailed results of each statement.

- |=| New Test Case 1
w x| Verify Statements
wverify-brake
V' verfy:limit
i Sim Qutput (simulinkCruiseAddRec

Fa

o 0 00

Pass

» Untested

9 Create a report using a custom Microsoft Word template.

In the Test Manager, right-click the test case name. Select Results: > Create
Report.

In the Create Test Result Report dialog box, set the options:
o Title: SafetyTest

* Results for: ALl Tests
* File Format: DOCX

See Also

+ For the other options, keep the default selections.

¢ For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

d Enter a file name and select a location for the report.
e C(lick Create.
10 Review the report.

a In the Test Case Requirements section, click the link to trace to the
requirements document.

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

Name E Data Type E Units E Sample Time E Interp E Sync E :‘:m
0 Tes e e e s e | L
Sequencel_..Verifyverify(engaged == siTestResult ! ! ' zeh ! union . Link
false) ! ! ! ' ! !

O Test ! ! ! : ! _ .
Sequencel...MerifyHigh:verify(engaged @ SITestResut ! ! zoh | union 1 Link
== false) : : : : : :
Related Examples
. “Link Tests to Requirements” on page 1-2
. “Validate Requirements Links in a Model” (Simulink Requirements)

. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

9 Verification and Validation

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

standards |
1
I
““--—._.——ﬁ ;
| I
| I
I
i
I
* Model analysis: check
Develop detailed N Add lpropfarty N standards, check for_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
F Y N
Resolve errorsand | Replicate errors
confirm exceptions | Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

9-6

Analyze a Model for Standards Compliance and Design Errors

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

slVerificationCruiseStart
2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
In the model window, select Analysis > Model Advisor > Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the
System Hierarchy.

5 Check your model for MAAB style guideline violations using Simulink Check.

In the left pane, in the By Product > Simulink Check > Modeling Standards
> MathWorks Automotive Advisory Board Checks folder, select:

* Check for indexing in blocks

* Check for prohibited blocks in discrete controllers

* Check model diagnostic parameters

Right-click the MathWorks Automotive Advisory Board Checks node, and
then select Run Selected Checks.

Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

To verify that your model passes, rerun the check. Repeat steps ¢ and d, if
necessary, to reach compliance.

To generate a results report of the Simulink Check checks, select the
MathWorks Automotive Advisory Board Checks node, and then, in the right
pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

9 Verification and Validation

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection.
In the right pane, click Run Selected Checks.
After the analysis is complete, expand the Design Error Detection folder, then
select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog
box provides tools to help you diagnose errors and warnings in your model.
a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.
b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.
¢ Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.
See Also

Related Examples

9-8

“Check for Compliance Using the Model Advisor and Edit-Time Checking” (Simulink
Check)

“Collect Model Metrics Using the Model Advisor” (Simulink Check)
“Run a Design Error Detection Analysis” (Simulink Design Verifier)
“Prove Properties in a Model” (Simulink Design Verifier)

Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional Testing and Coverage Analysis Overview

Functional testing starts with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model regularly. Coverage measurement reflects the extent to which these tests have fully
exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Functional requirements

Create test inputs or Add run-time

import external test data verifications
Run tests Y- Collect > Report
coverage results
Add expected outputs A

Set coverage criteria

h 4

and acceptance criteria
N

v

Analyze dependencies
Refine model

Add tests
Refine requirements

Incrementally Increase Test Coverage Using Test Case
Generation

This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,

analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

9-9

9 Verification and Validation

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

slVerificationCruiseStart
2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')

3 Load the test suite from “Test Model Against Requirements and Report Results” on
page 9-2. At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx")
sltest.testmanager.view

4 Open the test sequence block. The sequence tests:
* That the system disengages when the brake pedal is pressed
+ That the system disengages when the speed exceeds a limit

Some test sequence steps are linked to a requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage
1 In the test manager, enable coverage collection for the test case.

Open the test manager. In the Simulink menu, click Analysis > Test Manager.
In the Test Browser, click the s1TReqTests test file.
Expand Coverage Settings.

Under COVERAGE TO COLLECT, select Record coverage for referenced
models.

e Under COVERAGE METRICS, select Decision, Condition, and MCDC.

e N T 9

9-10

Perform Functional Testing and Analyze Test Coverage

* COVERAGE SETTINGS

i)

VERA

(]

E TO COLLECT

1
[

Record coverage for system under test

+ | Record coverage for referenced models

COVERAGE METRICS

+| Decision + | Condition
« | MCDC Lookup Table
Signal Range Signal Size
Simulink Design Verifier Saturation on integer overflow

Relational Boundary

Run the test. On the test manager toolstrip, click Run.

When the test finishes, in the Test Manager, navigate to the test case. The aggregated
coverage results show that the example model achieves 50% decision coverage, 41%
condition coverage, and 25% MCDC coverage.

WN

~AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO... DECISION COMEITION MACEC +

[Pa] simulinkCruisesddregExample A 3 50% — A1% - 25% mm

-
Add Tests for Missing Coverage Export

9-11

9 Verification and Validation

9-12

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
Select the test case in the Results and Artifacts and open the aggregated coverage
results section.

2 Select the test results from the previous section and then click Add Tests for
Missing Coverage.

The Add Tests for Missing Coverage options open.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier.

5 Run the updated test suite. On the test manager toolstrip, click Run. The test results
include coverage for the combined test case inputs, achieving increased model
coverage.

See Also

Related Examples

“Link Tests to Requirements” on page 1-2

“Run-Time Assessments” on page 3-45

“Test Model Output Against a Baseline” on page 6-9

“Highlight Functional Dependencies” (Simulink Design Verifier)

“Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
“Extend Model Coverage of a Test Case”

Analyze Code and Test Software-in-the-Loop

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Detailed model /

N . Add tests /
R ts p------- Traceability-- - - -—-- -
Fquirements al Refine model
T
_/:(’/"—‘\ :
Traceability |
N I
l :
Devel Code analysis Veri Its / Anal Report
Evelop or » Error detection #» Run tests > enfy resuits > natyze » epo
generate code equivalence coverage results

Code metrics

[

h 4

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the Simulink project:

slVerificationCruiseStart

9-13

9 Verification and Validation

9-14

2 From the Simulink project, open the model
simulinkCruiseErrorAndStandardsExample.

engaged

- I
(1) : P CruiseOnOff
-£ CruiseOnOff
CruiseOnOff
engaged
(2) P Brake —Eengaged
- Brake
Brake w
:3 —£ Speed g
Speed
(4) P CoastSetSw
£ CoastSetSw tspeed
CoastSetSw —E tspeed
(5) P AccelResSw
—£ AccelResS: :
AccelResSw SeoTessd \“L /
Compute target speed

Run Code Generator Checks

tspeed

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating

code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.

Analyze Code and Test Software-in-the-Loop

Code Generation Objectives (System target file: ert.tic)

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Polyspace

RAM efficiency
Traceability
Safety precaution
Debugging

+

5

Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

v [C@ Code Generation Advisor
& Check model configuration settings against code generation objectives
o Check for blocks not recommended for MISRA C:2012

Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

I+

+

9-15

9 Verification and Validation

At the bottom of the Code Generation Advisor window, select Model Advisor.

Under the By Task folder, select the Modeling Guidelines for MISRA C:2012
advisor checks.

» Model Advisor
[] I3 By Product
v [m] =) By Task

[m] [C5) Code Generation Efficiency

[] =3 Data Transfer Efficiency

[] 53 Frequency Response Estimation

[m] =) Managing Data Store Memory Blocks

[C=1 Managing Library Links And Variants

[] 53 Migrating to Simplified Initialization mode

[m] 55 Model Metrics

[m] =) Model Referencing

W [C=1 Modeling Guidelines for MISRA C:2012

=] Check configuration parameters for MISRA C:2012
=] Check for blocks not recommended for MISRA C:2012
:=| Check for unsupported block names
=] Check usage of Assignment blocks
=] “Check for bitwise operations on signed integers
(=] “Check for recursive function calls
=] “~Check for equality and ineguality operations on floating-point
=] “Check for switch case expressions without a default case

3 Click Run Selected Checks and review the results.

4 If any of the tasks fail, make the suggested modifications and rerun the checks until
the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.

9-16

Analyze Code and Test Software-in-the-Loop

3 After the code is generated, right-click Compute target speed and select Polyspace >

Options.

"
@

* Commeonly Used Parameters

Select:
Solver
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
Design Verifier
Polyspace

Configuration Parameters: simulinkCruiseErrorAndStandardsExample/ModelReferencing (Active)

= All Parameters

Polyspace options (for Embedded Coder generated code)
Polyspace
Product mode: | Bug Finder
Settings from: | Project configuration and MISRA C 2012 checking for generated code
[use custom project file
Project configuration: Configure
[] Enable additional file list Select files
[[] stub lookup tables
Data Range Management
Input: Use spedified minimum and maximum values
Tunable parameters: | Use calibration data
Model reference
Model reference verification depth: | Current model only

Model by model verification

Output

Browse for project file

Output folder: ‘ results_$ModelName$

[1 Make output folder name unigue by adding a suffix
[[] Add results to current Simulink Project

Results review
Open results automatically after verification
Configuration checking

Check configuration before verification: |On (proceed with warnings)

OK

~ Check configuration

Cancel Help Apply

4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

9-17

9 Verification and Validation

W Polyspace Bug Finder
File Edit Tools Window Help

&l “]Q|

simulinkCruis...Example_config =

=-Target & Compiler
Macros
- Environment Settings
----- Inputs & Stubbing
----- Multitasking
----- Bug Finder Analysis
----- Main Generator
----- Reporting
----- Distributed Computing
----- Advanced Settings

Coding Rules & Code Metrics

Coding Rules

[] Check MISRA C:2004 | required-rules
[] Check MISRA AC AGC| OBL-rules
[] Check MISRA C:2012 | mandatory-required

[] Check custom rules

Code Metrics

Edit
Edit
Edit

Edit

Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

Save and close the Polyspace configuration window.
From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and

defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment

shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

9-18

Analyze Code and Test Software-in-the-Loop

Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOn0ff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to

check only a subset of MISRA rules.

¥ Configuration | |¥] Result Details

{p] Dashboard | [¥] Source | (=] Output Summary

' Polyspace Bug Finder - Compute \\home-00-ah\mhaines\Documents\MATLAB\project: ples\cruise3\results Compute\Compute - O *
File Reporting Metrics Tools Window Help
& & 5> run @ stop | Q -
B2 Results 'W'S <
All results | T New .- <A 5> @ Showing 118/118 » Compute.c X 4 b8 ||®@
- - - - - - FOeIifE LOMpUTE_IN_ACCEL (TUINTE_I7 10 |
Family &F Information o Fle F Class <F Function =f Severity #define Compute IN CRUISE ((uints_T)10) P
[=-MISRA C:2012 49 @ #define Cu[rpabsiINicnast. (cnn:;TJ 2u) @
2 Unused code 32 $define Compute IN NO ACTIVE CHILD ((uinte_T)0U)
4 Code design 2 #define Corrp'.:\:eill{iclﬂ; N (t'.:in:37TJ 2U)
[=-8 Dedlarations and definitions 14) - - -
=-8.7 Functions and objects should not be defined with external inkage if they are referenced in only one translation unit. 14 #define Compuce IN_ON ({uinzg_T)10)
L T Category: Advisory Compute.c Global Scope File Scope #define Compute IN_STANDBY (({uintg_T)20)
Loe Category: Advisory Compute.c Global Scope File Scope #define Compute IN_Steady ({uintg T)30)
1% * Category: Advisory Compute.c Global Scope File Scope
.= * Category: Advisory Compute.c Global Scope File Scope /* Block states (auto storage) */
Category Advisory Compute.c G\oba\scope File Scope W _Compute T EMFJEE DH;
- : mtegnry Advisory Computa c G\oba\s:opa F!Ie Scope /* Real-time model */
[Category: Advisory Compute.c Global Scope File Scope v 7
: RT_MCDEL_Compute_T Compute M ;
8 2 E RT_MCDEL_Compute T *const Eumpuca M = cCompute M ;
&l Project Browser Results List - - - - -
v /* Exported data definition */
Variable trace Compute.c|
I Resuft Review /% Definitien for custem storage class: Global */
boolean T AccelResSw;
Severity : | | |Enter comment here... poolean T Brake;
Status ~ boolean T Emastﬁetﬁw;
boolean T GruiseOnOff:
~ MISRA C:2012 8.7 (Advisory) (2 uined T Speeds
Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. boolean T engaged:
Variable ‘Compute_M' should have internal linkage. winte T rspeed;
/* Definition for custom storage class: Global */
uints_T Roldrate = 5U:
uinte_T Tncdec = 1o;
uints T maxtspeed = 90U;
v - v

In your model, right-click Compute target speed and select Polyspace > Options.
Set the Settings from (Polyspace Bug Finder) option to Project configuration.

This option allows you to choose a subset of MISRA rules in the Polyspace

configuration.
Click the Configure button.

select the check box Check MISRA C:2012 and from the drop-down list, select

In the Polyspace Configuration window, on the Coding Rules & Code Metrics pane,

9-19

9 Verification and Validation

single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are
applicable to a single unit.

¥ Polyspace Bug Finder O *
File Edit Tools Window Help
| & vl
onfiguratio =
simulinkCruis...Example_config x | 4 B
-Target & Compiler Coding Rules & Code Metrics
- Macros
‘- Environment Settings
----- Inputs & Stubbing
----- Multitasking Coding Rules
3 Coding Rules & Code Metrics [] Check MISRA C:2004 required-rules Edit
----- Bug Finder Analysis :
_____ Main Generator [] Check MISRA AC AGC OBL-rules Edit
----- Reporting Check MISRA C:2012 single-unit-rules Edit
----- Distributed Computin
. puting [] Use generated code requirements
----- Advanced Settings
[] Check custom rules Edit
Effective boolean types| Type 2 ¥ ':E:' .

boolean_T

Code Metrics

Calculate Code Metrics

Save and close the Polyspace configuration window.

7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

9-20

See Also

Family +f Information < File + Clad
--Code Metrics 69
+-Project Metrics 1
il-File Metrics 8
i Function Metrics 60

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

If they are not open already, open your results in the Polyspace environment.

From the toolbar, select Reporting > Run Report.

Select BugFinderSummary as your report type.

Click Run Report.

A W N =

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Analyze Generated Code Using Polyspace Bug Finder” (Polyspace Bug Finder)
. “Test Two Simulations for Equivalence”
. “Export Test Results and Generate Reports” on page 7-9

9-21

9 Verification and Validation

Module Verification and Testing Processor-in-the-Loop

Module Verification and Testing Processor-in-the-Loop
Overview

Module verification involves testing and analyzing code at a system level, integrating
generated code from your model, handwritten code, and legacy code. Module verification
often includes generating code that executes on a target object, rather than the desktop
environment. Analyze the code to resolve errors and evaluate key metrics. Test the
integrated system using new requirements-based tests and system-level tests from your
model. Collect coverage on these tests and add tests to meet coverage targets.

Detailed model
and/or
requirements | Tt
: 1
Traceability ! |
. I
1 ! |
) Test Code analysis:
Integrate unit- » Create PIL »| integrated Coverage v—»| * Error detaction Report
level code test cases code target met? * Code metrics results
1 Y
i N
1
: Add test 4—‘
Code unit 1 e
Refine |
Code unitn code
Related Examples
. “Test Two Simulations for Equivalence”

. “Analyze Generated Code Using Polyspace Bug Finder” (Polyspace Bug Finder)

9-22

Test a Model in Real Time

Test a Model in Real Time

Real-Time Testing and Testing Production Models Overview

Real-time testing assesses the system while including the effects of timers, physical
signals, and target hardware. Sweep through parameter values on the target, verify
system operation during execution, and verify expected results in the desktop
environment. Systems that have been verified on target hardware often exist in a change-
controlled state. You can test these systems without modifying them by using isolated
simulation and analysis environments.

Requirements Model or code
q Test cases

Resolve failures

h 4

Compare results to
Add real-time Deploy to real-time P
» » Execute tests expected outputs
test cases target computer . .
and PIL simulation

Related Examples

. “Create and Run Real-Time Application from Simulink Model” (Simulink Real-Time)

. “Test Models in Real Time” on page 8-2

. “Run-Time Assessments” on page 3-45

Report results

9-23

